Trauma analysis in bioarchaeology: a review and case study from Khuvsgul and the Tunka Valley (2025)

Archaeology

Original article УДК 569.9,904 EDN: LQHQTC

DOI: https://doi.org/10.21285/2415-8739-2024-3-64-89

Trauma analysis in bioarchaeology: a review and case study from Khuvsgul and the Tunka Valley

1117з с

Chenhe Yang , Tatiana Nomokonova , Robert J. Losey ' , Artur V. Kharinskii ' , Diimaajav Erdenebaatar 4, Matvei A. Portniagin 3, Samdantsoodol Orgilbayar 4,

Angela R. Lieverse 1

1University of Saskatchewan, Saskatoon, Canada

2University of Alberta, Edmonton, Canada

3Irkutsk National Research Technical University, Irkutsk, Russia

4Ulaanbaatar State University, Ulaanbaatar, Mongolia

5Irkutsk State University, Irkutsk, Russia

Abstract. This article presents a review of trauma analysis in bioarchaeology. It starts with an introduction on what trauma is and what permanent markers it can leave on bones, even after recovery. Studies of trauma allow bioarchaeologists to evaluate the mechanism of injury and possibly reveal the cause of trauma, which may inform on individuals' interactions with their enviro n-ments and sociocultural contexts. Trauma also can be incidental or intentional in origin, often reflecting cultural practices. Furthermore, this article focuses on the classification and interpretation of injuries in past populations, such as fracture, dislocation, ossification of soft tissues, and abnormal shape or contour of the bone. It describes different types of force trauma and defines dislocation and hematomas that may occasionally lead to ossification of adjacent soft tissues and can manifest as bony projections. This is followed by a case study utilizing trauma data to elucidate past human experiences. Human remains from twelve individuals excavated from Lake Khuvsgul, Mongolia, and three individuals from the adjacent Tunka Valley, Russian Federation, were examined. All skeletons were dated between the mid-11th and 14th centuries CE. Fatigue injuries on the spine were the most frequent, suggestive of strenuous activities, such as habitual horseback riding. There was some evidence of upper limb trauma, but limited lower body and violent trauma. A potential explanation of this pattern is that people in this area were frequently engaged i n pastoral activities, but conflict rarely impacted their daily lives.

Keywords: paleopathology, trauma, bone, fracture, Khitan-Mongol period, northern Mongolia, pastoralism, horseback riding, Lake Khuvsgul, Tunka Valley

Acknowledgements. Funding for this work was supported by the Social Sciences and Humanities Research Council of Canada (IDG 430-2021-00013). The authors would like to thank the expedition participants for their hard work on the excavations of Khuvsgul cemeteries and Mondy.

For citation: Chenhe Yang, Nomokonova T., Losey R.J., Kharinskii A.V., Erdenebaatar D., Portniagin M.A., Orgilbayar S., Liev-erse A.R. (2024) Trauma analysis in bioarchaeology: a review and case study from Khuvsgul and the Tunka Valley. Reports of the Laboratory of Ancient Technologies. Vol. 20. No. 3. P. 64-89. DOI: 10.21285/2415-8739-2024-3-64-89. EDN: LQHQTC.

© Chenhe Yang, Nomokonova T., Losey R.J., Kharinskii A.V., Erdenebaatar D., Portniagin M.A., Orgilbayar S., Lieverse A.R., 2024

Археология

Научная статья

Анализ травмы в биоархеологии: обзор и примеры исследований из Прихубсугулья и Тункинской долины

11Л "Уэ сА

Ченхе Янг , Т.Ю. Номоконова , Р.Дж. Лозей ' , А.В. Харинский ' , Д. Эрдэнэбаатар , M.A. Портнягин 3, С. Оргилбаяр 4, Анжела Р. Ливерс 1

1Университет Саскатчевана, Саскатчеван, Канада

2Университет Альберты, Эдмонтон, Канада

3Иркутский национальный исследовательский технический университет, Иркутск, Россия

4Улан-Баторский государственный университет, Улан-Батор, Монголия

5Иркутский государственный университет, Иркутск, Россия

Аннотация. Данная статья представляет обзор анализа травм в биоархеологии. Она описывает, что такое травмы и какие постоянные следы от них остаются на костях человека даже после их заживления. Исследование травм также позволяет биоархеологам оценить механизмы повреждений и, возможно, узнать их причины, что может дать информацию о взаимодействии людей с окружающей средой и социокультурным контекстом. Такие травмы могут быть случайными или преднамеренными по своему происхождению, часто отражая культурные традиции. Кроме того, в этой статье особое внимание уделяется классификации и интерпретации травм, таких как переломы, вывихи, отвердения мягких тканей и аномальные форма и контур кости, у древних населений. Описываются различные виды силовых травм и приводятся определения вывихов и гематом, которые иногда могут приводить к отвердению прилегающих мягких тканей и проявляться в виде костяных выступов. Приводятся примеры исследования травм на останках людей с могильников, расположенных на озере Хубсугул в Монголии (12 человек) и в Тункинской долине на территории России (3 человека). Останки людей датируются между серединой XI и XIV веков н. э. Наиболее частые виды травм на костях - это повреждения позвоночников, указывающие на требующую усилия активность, такие как постоянная езда на лошадях. Также зафиксированы случаи травм на руках и в меньшей степени на ногах. Повреждения в виде насильственных травм - очень редки. Возможное объяснение таких случаев связано с постоянным участием в скотоводческой деятельности. Конфликт редко был причиной повседневной жизни.

Ключевые слова: палеопатология, травма, кость, повреждение, Киданьско-Монгольский период, Северная Монголия, скотоводство, езда на лошади, озеро Хубсугул, Тункинская долина

Благодарности. Исследование осуществлено при поддержке гранта Social Sciences and Humanities Research Council of Canada (№ IDG 430-2021-00013). Авторы также выражают благодарность участникам экспедиций за их работу при раскопках могильников на берегу озера Хубсугул и в Мондах.

Для цитирования: Ченхе Янг, Номоконова Т., Лозей Р.Дж., Харинский А.В., Эрдэнэбаатар Д., Портнягин M.A., Оргилбаяр С., Ливерс А.Р. Анализ травмы в биоархеологии: обзор и примеры исследований из Прихубсугулья и Тункинской долины // Известия Лаборатории древних технологий. 2024. Т. 20. № 3. С. 64-89. DOI: 10.21285/2415-8739-2024-3-64-89. EDN: LQHQTC.

1. Introduction

Trauma is injury to living body tissues caused by external forces (Lovell, 1997; Lovell and Grauer, 2019). Some injuries, such as fractures, can leave permanent markers on bones even after recovery, allowing bioar-chaeologists to evaluate their mechanisms. In turn, understanding the mechanism of injury can reveal the cause of trauma, which may inform on individuals' interactions with their environments and sociocultural contexts (Lovell and Grauer, 2019). This article will review trauma analysis in bioarchaeology (paleotrau-ma), including types of trauma and their interpreta-

tions. It will then present a case study to demonstrate how trauma analysis can contribute to understanding the past. The case study will focus on human remains excavated from four Lake Khuvsgul cemeteries (n=12) and two cemeteries from the adjacent Tunka Valley (n=3). All date to the Khitan-Mongol period (mid-11-14th centuries CE).

2. Trauma Analysis in Bioarchaeology 2.1 Types of Trauma

Because archaeological human remains are usually limited to skeletal tissues, paleotrauma typically

reflects injuries present on bones (Judd and Rederfen, 2012). Ortner (Ortner, 2003. P. 120) proposed four types of bone injuries for archaeological remains: a partial or incomplete break, abnormal displacement of joints, disruption in nerve and/or blood supply, and artificially induced abnormal shape or contour of the bone. Lovell and Grauer (Lovell and Grauer, 2019) integrated this work with that of other scholars (Lovell, 1997; Ortner, 2003. P. 119-120; Roberts, 2006; Roberts and Manchester, 2007. P. 214-217) and introduced one of the most popular categorizations of paleotrauma: fracture, dislocation, ossification of soft tissues, and extrinsically induced abnormal shape or contour of the bone. Fracture

Technically, the term "fracture" is broad, referring to any antemortem discontinuity of bone and encompassing breaks, blunt and sharp force trauma, and high-velocity projectile injuries (Christensen et al., 2019. P. 352-363; Galloway et al., 2014b). All fractures reflect both extrinsic factors, such as the direction, magnitude, and rate of force applied, and intrinsic factors, reflecting the bone's ability to resist failure (e.g., tissue composition, bone geometry, individual age, and underlying pathological conditions; Brickley and Mays, 2019; Christensen et al., 2019. P. 343-345; Redfern and Roberts, 2019). Among these factors, the direction of the force can suggest the mechanism of injury. For instance, a direct collision between a rigid object and bone typically produces depressed, transverse, and comminuted (more than two fragments) fractures, with trauma location reflecting the impact site (Redfern and Roberts, 2019). In contrast, indirect forces, often resulting from twisting, tension, or compression, transform and propagate to affect other bone regions, commonly giving rise to oblique and spiral fractures, avulsion injuries (at tendon or ligament attachments), and fracture-dislocations (Lovell and Grauer, 2019; Redfern and Roberts, 2019).

Depending on the size, shape, and velocity of objects generating the force, fractures can be classified into blunt force trauma (BFT), sharp force trauma (SFT), high-velocity projectile trauma, or combinations thereof (Christensen et al., 2019. P. 352). High-velocity projectile trauma pertains to injuries caused by bullets, a phenomenon that only emerged following the widespread use of firearms. BFT is typically caused by low-velocity forces delivered by broad and blunt sur-

faces and tends to propagate along paths of least resistance until the energy generated by the force has been dissipated (Spatola, 2015). BFT usually produces depression in the cranium and transverse fractures in the post-cranial skeleton (Christensen et al., 2019. P. 345-346; Galloway et al., 2014c). SFT resembles BFT but stems from intense compressive or shearing forces concentrated in a narrow area (Christensen et al., 2019. P. 360-361). Typical examples include cutmarks, penetrating wounds from projectile weapons (e.g., arrows and javelins), and stab wounds, all of which yield discernible modifications such as linear incisions, punctures, gouges, and clefts (Christensen et al., 2019. P. 360-361; Tur et al., 2018; Vanezis, 2021. P. 1). In addition, some objects, such as axes, can produce a combination of BFT and SFT reflecting a sharp cutting edge and substantial weight (Vanezis, 2021. P. 1-2). Dislocation

Dislocation is the disruption of the normal connections between bones at their joints. Specifically, a dislocation, or luxation, refers to an entire displacement, while subluxation suggests that the joint is partially displaced but retains some contact (Lovell and Grauer, 2019). In bioarchaeology, dislocations can only be directly identified if they persist long enough for bone modifications to occur, such as the development of secondary joints. Such dislocations are most often documented on the hip because its socket is relatively deep and difficult to fully restore (McKenzie et al., 2022; Mitchell and Redfern, 2008; Plischuk et al., 2018; Traversari et al., 2016). Severe joint displacements may also be accompanied by fractures and damage to soft tissues that may be visible on bone. In addition, subluxation and chronic dislocation (e.g., of the shoulder joint) can cause secondary changes to joints and adjacent tissues, resulting in osteoarthritis, soft tissue ossification, and even anky-losis (joint fusion). In these cases, dislocations may be indirectly identified (Mitchell and Redfern, 2008; Niki-tovic et al., 2012; Osterholtz et al., 2019; Toritsuka et al., 2007; Thompson, 2001; Zhang et al., 2022). Ossification of Soft Tissues

Hematomas, or blood clots, usually form after traumatic injuries and facilitate bone healing. However, hematomas may occasionally lead to ossification (mineralization) of adjacent soft tissues, manifesting as irregularly shaped yet smooth bony formations or large bony projections (Redfern and Roberts, 2019;

Waldron, 2020. P. 80). In medical contexts, "myositis ossificans" (MO) is a general term used to denote the formation of bone within skeletal muscles (Walczak et al., 2015). When the condition is triggered by trauma, as is most common, it is referred to as "myositis ossificans traumatica" (MOT) or "traumatic myositis ossification" (Lovell and Grauer, 2019; Walczak et al., 2015). Unfortunately, since many ossifications do not adhere to adjacent bones, they can be easily overlooked during archaeological excavations (Redfern and Roberts, 2019).

Extrinsically Induced Abnormal Shape or Contour of the Bone

Chronic, low-grade compression can modify the normal shape or contour of bone (Redfern and Roberts, 2019). Such trauma can be either incidental or intentional in origin, often reflecting cultural practices. Intentionally induced alterations that produce discernible anatomical changes to bone morphology include cranial modification, foot-binding, and waist training. Such practices are usually initiated early in an individual's life, and these practices involve the sustained application of mild yet persistent compressive forces that ultimately lead to enduring morphological changes (Alfonso-Durrruty et al., 2015; Gibson, 2015; Mayall et al., 2017; Seguchi et al., 2023; Stone, 2012; Stone, 2020; Tiesler, 2012; Zhao et al., 2020). Antemortem vs. Perimortem vs. Postmortem

Trauma can be categorized as antemortem or perimortem based on its association with the time of death. Antemortem trauma encompasses injuries that occurred before the death, while perimortem trauma transpired in proximity to the time of death and may bear direct relevance to the cause of death (Galloway et al., 2014a; Passalacqua and Rainwater, 2015; Redfern and Roberts, 2019). The primary indicator of antemortem trauma is evidence of bone reaction, such as the formation or removal of bone tissue in the days or weeks following the injury (Christensen et al., 2019. P. 347). In the absence of this, trauma is peri-mortem or postmortem. However, it is imperative to emphasize that postmortem 'trauma' is not genuine trauma because it reflects events that did not disrupt living tissues (Christensen et al., 2019. P. 341). Postmortem disturbances to dry brittle bone (typically years after death) can be identified by jagged, stepped, or irregular margins, flaked cortex, no plastic (smooth) deformation, and/or lighter hues of fracture

margins (Christensen et al., 2019. P. 350-351; Klaus and Lynnerup, 2019; Redfern and Roberts, 2019).

2.2 Trauma Interpretation

The interpretation of paleotrauma primarily relies on contemporary medical and forensic research, and thereby bioarchaeologists must presume that the mechanisms and scenarios of injury in the past are similar to those today (Cheverko et al., 2020). Bioar-chaeologists do not simply define an injury as "incidental" or "intentional." Instead, potential causes are suggested with consideration for anatomical regions, activity patterns, demographic factors, and archaeological or historical contexts.

Cranium

Cranial injuries commonly present as linear fractures, depressions, and penetrations (Galloway and Wedel, 2014a). Injuries to the vault and face are primarily caused by direct, high-velocity impacts, often resulting from assaults or accidental collisions (Barss et al., 1984; Scott and Buckley, 2010). The facial region is a common target in interpersonal conflicts, particularly in instances of domestic violence (Lovell and Grauer, 2019). Among facial bones, nasal fractures are the most prevalent due to the nose's prominent location and relatively fragile structure (Galloway and Wedel, 2014a). Conversely, trauma to the cranial base typically arises from forces indirectly transmitted from impacts to the face or nape (Galloway and Wedel, 2014a; Lovell and Grauer, 2019). In addition to fractures, acute dislocations of the mandible can occur from excessive stress during mastication, physical assaults, or falls where the chin absorbs the impact (Flensborg et al., 2019; Rando and Waldron, 2012; Shorey and Campbell, 2000; Toufeeq et al., 2019). Vertebrae

Cervical vertebral dislocations and fractures are typically caused by high-energy impacts, such as strangulation and decapitation (Galloway and Wedel, 2014c). Thoracic and lumbar vertebrae, the axis of the human body, are frequently engaged in various activities and therefore vulnerable to stress fractures, especially the more caudally they are positioned (Galloway and Wedel, 2014c; Jurmain, 2013. P. 170-172; Plomp, 2023; Toman et al., 2016; Waldron, 2020. P. 45 and 151). For example, spondylolysis, a cleft in the neural arch, often results from the repetitive impact of the inferior articular process of one vertebra on the arch

of the vertebra below it (Hu et al., 2008; Plomp, 2023; Waldron, 2020. P. 151). Schmorl's nodes are characterized by the compression of the intervertebral disc by the vertebral endplate, leading to the prolapse of the disc's nucleus pulposus into the adjacent vertebral body (Faccia and Williams, 2008; Waldron, 2020. P. 45). Vertebral compression fractures refer to deformations of the vertebral body, distortion ranging from subtle deformation to substantial collapse, depending on the impact position (Genant et al., 1993). Although clinical research indicates that internal factors may predispose some individuals to these injuries, it also suggests that strenuous activities straining the lower back are the primary external factor of vertebral trauma (Bono, 2004; Sward, 1992; Waldron, 2020. P. 45).

Thorax and Pectoral Girdle

The thorax and pectoral girdle include the shoulder (scapulae and clavicles), thoracic vertebrae, sternum, and ribs. Vertebral trauma was discussed above, so is not included here. The predominant cause of trauma to the thorax and pectoral region is blunt force. Rib fractures are most frequently linked to highvelocity collisions, falls, and interpersonal violence, with forces from the front or back generating oblique or transverse fractures on the midshaft or posterior ribs (Beshay et al., 2020; Galloway and Wedel, 2014c). In contrast, clavicles have reduced muscular support and are susceptible to injuries at the midshaft (Galloway, 2014a). Clavicular fractures typically result from compression forces during a fall, often accompanied by fracture-dislocations of the upper limbs and/or ribs (Faldini et al., 2010; Judd and Roberts, 1999; Kihlstrom et al., 2017). Trauma to the scapula primarily occurs in the shoulder joint (glenoid fossa and acromion process), often including dislocations, as the result of indirect forces such as falling onto an outstretched arm (Cole, 2017; Lovell and Grauer, 2019). Fractures of the scapular body and sternum are relatively uncommon among thorax injuries unless subjected to direct, high-energy impacts, usually produced by severe collisions and violent assaults (Cole et al., 2012; Galloway, 2014a; Galloway and Wedel, 2014b; Lovell and Grauer, 2019). Upper Limb

Arms and hands make up our upper limbs, allowing us to participate in many daily activities. Direct blows can cause transverse or comminuted fractures,

often on the humeral or ulnar shafts (Galloway, 2014a; Judd, 2008). The indirect forces generated by the forearm and hand can produce rotational or avul-sive fractures and dislocations on the distal and proximal ends of bones, typically resulting from falls onto an outstretched hand or when using the arm to twist vigorously (Galloway, 2014a). As the distal ends of our upper extremities, hands are vulnerable to trauma because of their lower muscle mass and their use in manipulating objects and thwarting impacts on the body (Galloway, 2014a). Metacarpal shaft fractures are commonly incurred in modern populations through punching (Brickley and Smith, 2006), while phalangeal dislocations are usually associated with hyperextension of the palm after a fall, direct blows, or twisting (Chen and Kalainov, 2016). Wrist dislocations are often produced by tensile forces from high-energy impacts, causing hyperextension and dorsal (posterior) compression of the wrist (Apergis, 2013. P. 1).

Lower Limb

Given the density of the large lower limb long bones and the muscle mass of the thigh, leg injuries typically result from high-energy impacts. Severe collision accidents can transmit high-energy rotational forces from the knee to the hip, leading to femoral and pelvic fractures and dislocations (Galloway, 2014b; Lovell and Grauer, 2019; Roca et al., 2012). Lower leg trauma often manifests in the middle and distal sections of the tibia and fibula. Direct impacts, such as from high-velocity collisions, can cause transverse or oblique fractures to the tibial shaft and may extend to involve the fibula (Galloway, 2014b). Distal tibial fractures encompass a range of breaks above and within the ankle complex, frequently associated with rotational and compressional forces experienced in collisions and falls on steep slopes (Lovell and Grauer, 2019). Falls can also cause malleolar fractures, commonly occurring when the foot is anchored to the ground and the body lunges forward, resulting in oblique, transverse, or avulsion fractures and often accompanied by dislocations and ligament injuries (Bowyer, 2017). The feet support and propel our bodies, bearing and transmitting up to ten times our body weight when running and jumping (Bowyer, 2017). Fatigue fractures are the most common traumatic injuries documented on pedal bones, particularly affecting the metatarsals and their joints with the pha-

langes of the toes (Bowyer, 2017; Welck et al., 2017). Additionally, fractures of the toes and metatarsals are frequently caused by heavy objects falling on the foot, resulting in blunt force trauma (Bowyer, 2017). Understanding Trauma Analysis and its Limitations

While the ultimate mechanisms behind pale-otrauma cannot be definitively known (Judd and Redfern, 2012), the fundamental goal for bioarchaeolo-gists is to consider all potential causes and provide the most plausible explanations. Violent trauma, for example, can be diagnosed through cranial and facial fractures, defence wounds on forearms, and weapon-induced injuries (Alvrus, 1999; Galloway and Wedel, 2014b; Judd, 2006; Lambert and Welker, 2019; Smith and Knusel, 2014; Sottysiak, 2017). However, it is often impossible to discern whether individuals with such injuries were simply victims of interpersonal conflict or warfare (i.e., non-combatants), or participants in such events (Judd, 2008). Conversely, accidental injuries are usually identified by avulsion, spiral, and oblique fractures on long bones (Alvrus, 1999; Judd and Roberts, 1999; Cole, 2017; Mant et al., 2021). Such injuries may result from accidents, such as a clumsy misstep, but they can also indicate that individuals were exposed to higher levels of hazardous circumstances, potentially influenced by occupations, social inequality, and structural violence (Alvrus, 1999; Bernbeck, 2008; Bright, 2020; Judd and Roberts, 1999; Lambert and Welker, 2019; Mant, 2019; Scott and Buckley, 2010).

Moreover, occupational trauma is typically diagnosed by injuries caused by repetitive and/or strenuous activities, such as vertebral injuries, fatigue fractures on pedal bones, and specific types of trauma related to the social background, such as animal-related trauma in rural or pastoral populations (Berthon et al., 2023; Galloway and Wedel, 2014c; Glosten, 2015. P. 177-182; Karapetian, 2021; Mansfield and Wroten, 2021; Waldron, 2020. P. 45). It can be challenging to distinguish between trauma arising from exploitation associated with social stratification and that resulting from the burdensome demands of seeking out a livelihood to overcome environmental conditions (Klaus, 2012; Knusel, 2000). Additionally, these injuries are usually nonfatal, making it difficult to accurately estimate the timing or sequence of these antemortem traumatic lesions if all are fully healed (Judd, 2008). Many other factors, such as aging (e.g.,

osteoporosis), genetic susceptibility, and malnutrition, can also contribute to injury, necessitating a more prudent interpretation of paleotrauma (Alghamdi et al., 2014; Cunningham et al., 2016. P. 32; Waldron, 2020. P. 118).

3. Case Study - Lake Khuvsgul and Tunka Valley Cemeteries

3.1 Materials and Methods

Can the analysis of paleotrauma help us understand Khitan-Mongol populations from northern Mongolia and the Tunka Valley? Here, we examine trauma on human remains excavated from the cemeteries of Nogoon Gozgor 1, Urd-Khiar 1 and 2, Zun Khiaryn Denzh 1, and Mondy 1 and 5. The first four sites, situated on the northeastern shore of Lake Khu-vsgul, Mongolia (Figure 1), were excavated between the late 1990s and 2019 by researchers from Irkutsk National Research Technical University (INRTU) and Ulaanbaatar University (Kharinskii and Erdenebaatar, 2011; Kharinskii et al., 2020; Orgilbayar et al., 2018; Orgilbayar et al., 2019). Common grave goods include sheep bones and iron weapons and tools, and some individuals were found covered with birch bark or placed in wooden coffins (Kharinskii and Erdenebaa-tar, 2011; Kharinskii et al., 2020; Kharinskii et al., 2023; Kharinskii 2023; Orgilbayar et al., 2019). The Mondy 1 are 5 cemeteries are located on the west-

Fig. 1. Geographical locations of Lake Khuvsgul cemeteries (K) and Mondy 1 and 5 (M) in the Tunka Valley. Graphed by

Google Earth and ArcGIS Рис.1. Географическое местонахождение могильников на озера Хубсугул (K) и Монды 1 и 5 (M) в Тункинской долине. Карта сделана с использованием Google Earth и ArcGIS

ernmost point of the Tunka Valley, Russia (Figure 1), ~20 km northeast of the Khuvsgul cemeteries. The cemetery was excavated in 2020-21 by scholars from INRTU (Kharinskii and Portniagin, 2021). The Tunka Valley served as an important corridor for migrations and trade between the Baikal Region and northern Mongolia since the late Pleistocene (Kozyrev et al., 2014; Losey et al., 2016; Shchetnikov et al., 2019). Indeed, artifacts from Mondy 1 are highly comparable with those from the Khuvsgul cemeteries, implying their close connection in the past (Kharinskii and Erdenebaatar, 2011; Kharinskii et al., 2020; Kharinskii et al., 2022; Kharinskii et al., 2023).

Twelve individuals were excavated from the Khu-vsgul cemeteries, while three came from the Tunka Valley. All deceased were interred in burial pits dating to the Khitan-Mongol period, from the mid-11th through 14th centuries CE (Kharinskii and Erdenebaa-tar, 2011; Kharinskii et al., 2022; Kharinskii et al., 2023). Age at death estimations focused on cranial and palatal suture closure (Meindl and Lovejoy, 1985), traits of the pubic symphysis (Brooks and Suchey, 1990), and iliac auricular surface (Buckberry and Chamberlain, 2002; Meindl and Lovejoy, 1985) and, for non-adults, on skeletal development (Buikstra and Ubelaker, 1994; Schaefer et al., 2009). Sex estimation was mainly based on morphological features of the cranium, mandible and pelvis (Buikstra and Ubelaker, 1994; Phenice, 1969). Of the 15 individuals, 13 were adults (20+ years), and two were post-pubescent non-adults (15-20 years). Four were estimated to be females, eight to be males, and three were undetermined (Figure 2, Table 1). For each individual, bone representation indices were calculated after Dodson and Wexlar (Dodson and Wexlar, 1979). Trauma documentation was macroscopic and non-invasive. Following the guidance of Redfern and Roberts (Redfern and Roberts, 2019), lesion type, location, healing process, and other noteworthy observations were recorded (Table 1).

3.2 Results and Discussion

A total of 39 injured bones (Figure 3A) were identified from 10 individuals, including seven males, two females, and one of unknown sex. One individual was non-adult, one young adult (25-35 years), and eight were middle or older adults (35+ years). Vertebral lesions were the most prevalent, present on all 10

affected individuals. These vertebral injuries included two cases of spondylolysis, four vertebral compression fractures (VCF), and 24 cases of Schmorl's nodes (Figure 3B). No cranial trauma or perimortem injury was identified. Three individuals exhibited trauma in the thorax and pectoral girdle, two having healed clavicle fractures and the third healed fractures to five right ribs. Finally, two individuals had injuries to the limbs, one on the left radius and the second on a right meta-tarsal.

Given the limited sample size (n=15), discussion will focus on the interpretation of paleotrauma at the individual level. Clear evidence of violence, such as weapon-induced perimortem trauma and defence wounds, was not observed in this study. Historical records suggest that tensions among the tribes of the Mongolian steppe began to escalate in the early 12th century and persisted until 1206 CE, culminating in Chinggis Khan's victory and the establishment of the Mongol Empire (May, 2022; Togan, 2022a; Togan, 2022b). Therefore, the absence of violent trauma in the sample may imply that northern Mongolia and the Tunka Valley experienced less conflict compared to contemporaneous populations further south, and that this relative peace was maintained after the establishment of the Mongol Empire.

The only potentially violent event is suggested by the five fractured ribs of an individual from Urd-Khiar 1 (Figure 4). However, the mechanisms of rib trauma are complex and can result from collisions, falls, interpersonal conflict, and even pathological conditions (Beshay et al., 2020; Brickley and Smith, 2006; Lovell, 1997). Notably, high elevation falls and violent encounters typically result in multiple injuries to the cranium and extremities simultaneously (Judd, 2002; Petaros et al., 2013), a pattern not observed in

7.5-11.5 11.5-15 15-10 20-25 25-55 35-50 50- 2<Himiure)

Years of Age at Death

Fig 2. Demographic profile of the Khuvsgul and Tunka Valley cemeteries (n=15) Рис. 2. Демографические данные по могильникам с побережья озера Хубсугул и Тункинской долины (15 человек)

Table 1. Bioarchaeological information for the Khuvsgul and Tunka Valley cemeteries Таблица 1. Биоархеологическая информация с Хубсугульских и Тункинских могильников

Site and Individual/Age at DeathSexBone RepresentationTrauma Documented

Burial (B)(in years)Indext

Mondy 1 B.1 (Tunka17-20M0.51Six L vertebrae; L6 vertebra: bilateral

Valley)spondylolysis

Mondy 1 B.2 (Tunka20+*0.03

Valley)

Mondy 5 B.1 (Tunka25-35M0.32L clavicle: healed fracture of acromial

Valley)shaft; one L vertebra: Schmorl's node and compression fracture

Nogoon Gozgor 1 B.320+*0.06

(Khuvsgul)

Nogoon Gozgor 1 B.425-35M0.55

(Khuvsgul)

Nogoon Gozgor 1 B.545-60F0.37Distal L radius shaft: healed fracture;

(Khuvsgul)T12-L1, and L5 vertebrae: Schmorl's nodes

Nogoon Gozgor 1 B.616-18F0.26

(Khuvsgul)

Urd-Khiar 1 B.935-50M0.79Five R rib shafts (second rib and four mid-

(Khuvsgul)level ribs): healed fractures (bony spurs on three); T8-T11 and L1 vertebrae: Schmorl's nodes

Urd-Khiar 2 B.2140-50M0.61L5 vertebra: bilateral spondylolysis; three

(Khuvsgul)T vertebrae: Schmorl's nodes

Urd-Khiar 2 B.2325-35F0.65

(Khuvsgul)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Urd-Khiar 2 B.2435-50F0.74R clavicle: healed fracture of acromial

(Khuvsgul)shaft; one T and one L vertebrae: Schmorl's nodes

Urd-Khiar 2 B.2635-50M0.42C6 vertebra: compression fracture with

(Khuvsgul)fusion of C5-7; T7-8 vertebrae: Schmorl's nodes

Zun Khiaryn Denzh 135-50M0.72T11-12 vertebrae: compression fracture;

B,1 (Khuvsgul)T12 vertebra: Schmorl's node

Zun Khiaryn Denzh 140-50M0.45T9 vertebra: Schmorl's node

B,2 (Khuvsgul)

Zun Khiaryn Denzh 135-45*0.35R metatarsal 2: healed fracture of proxi-

B.9 (Khuvsgul)mal shaft; four T and L4-5 vertebrae: Schmorl's nodes

Sex: M, male; F, Female; * undetermined. t Bone Representation Index: the absolute presence or absence of individual skeletal elements compared to the number of elements if fully preserved (Dodson and Wexlar, 1979). For example, an index of 1.0 would represent a skeleton with all elements present (though not necessarily complete). Trauma Documented: L, left side; R, right side; C, T, and L vertebrae: cervical, thoracic, and lumbar, respectively.

Fig. 3. Locations of observed traumatic lesions within the sample, with number of affected skeletal elements indicated and types of vertebral trauma and their distributions. VCF:

vertebral compression fractures. Images were produced by Visible Body Suite (Version 4.31; 2023). Retrieved July 18,

2024, from www.visiblebody.com Рис. 3. Расположение травматических поражений у анализируемых индивидуумов с указанием количества поражений и видов травм и их распределение. VCF: vertebral compression fractures (позвоночный компрессионный перелом). Рисунок сделан 18 июля 2024 г. с помощью Visible Body Suite (версия 4.31; 2023), www. visiblebody. com

this skeleton. Therefore, it is more likely that a sudden high-energy collision caused the rib fractures. Given that mounted pastoralism was the fundamental subsistence strategy for the Khitan-Mongol populations, interactions with domestic animals, such as being crushed or kicked by large livestock or falling from a galloping horse, could be responsible for such an injury. Contemporary medical records reveal that strikes and kicks from large livestock are common causes of animal-related injuries, with chest trauma being a frequent consequence (Bury et al., 2012; Busch et al., 1986).

The Urd'-Khiar 1 individual's rib fractures are fully healed, indicating that they occurred at least several months before death. While it's not possible to say whether they reflect one or more traumatic events, three of the four mid-level ribs have two fractures each on the same region of their anterior midshafts, suggesting a single severe occurrence. Rib trauma is often accompanied by damage to the respiratory and circulatory systems, which can lead to difficulty breathing and vascular disruption, resulting in hemo-thorax and pneumothorax (Brickley and Smith, 2006;

Fig. 4: Multiple healed right rib fractures, Urd'-Khiar 1, Burial 9, anterolateral views. Red arrows indicate fracture calluses. Note that three mid-level ribs each have two fracture calluses on their anterior midshafts (close-up images on the right) Рис. 4. Множественные сросшиеся переломы правых ребер c Урд-Хяр 1, погребение 9 (антерио-латеральные проекции). Красные стрелки указывают затвердения переломов. Обратите внимание, что середина каждого из трех ребер имеет по два затвердения от переломов на антериальной стороне (изображения крупным

планом справа)

Morgan et al., 2022; Oyetunji et al., 2013; Tumler et al., 2019). Medical records indicate that breaking more than three ribs in a single event is usually associated with severe visceral trauma and even death (Shkrum and Ramsay, 2007. P. 428). Therefore, the presence of healed fractures on five ribs—at least three of which may have occurred simultaneously— suggests that this person received considerable treatment and care from others over an extended period.

Lower limb trauma, a healed metatarsal fracture, was observed on only one individual. Injuries in the lower limbs are typically caused by spiral and bending forces resulting from strenuous activities such as jumping, slipping, kicking, and running (Bowyer, 2017; Galloway, 2014b; Lovell and Grauer, 2019; Roca et al., 2012). Archaeological and historical records indicate that horseback riding was a significant aspect of daily life on the eastern Eurasian steppe since the Bronze Age (Eng, 2016; Honeychurch, 2013; Honeychurch et al., 2021; Kradin, 2011; Taylor et al., 2015), with most equestrian injuries today and in the past occurring on the upper body (Andelinovic et al., 2015; Ball et al., 2007; Berthon et al., 2021; Paix, 1999; Wentz and de Grummond, 2009). Therefore, the low prevalence of lower limb trauma in the skeletal assemblage is consistent with mounted pastoralism and may suggest that horseback riding reduced the risk of injury to the lower body. The single metatarsal fracture could be a fatigue injury, resulting from overexercise, or a blunt force injury, such as from a heavy falling object or a large animal hoof (Bowyer, 2017). Both bioarchaeo-logical and modern clinical studies report cases of animal-induced trauma to pedal bones (Lee and Steen-berg, 2008; Pedersen et al., 2019; Watts and Meisel, 2011).

Falls are among the most common causes of fractures and dislocations in bioarchaeology and modern medicine (Alvrus, 1999; Lovell, 1997; Lovell and Grauer, 2019; Unguryanu et al., 2020). In this research, two clavicle fractures and one radius fracture were likely caused by falls. The radius fracture, occurring on the distal shaft (Figure 5), is probably a Colles' or Smith's fracture, because of the dorsal angulation of the bone's distal end. Although it is difficult to determine which because bone remodelling has obscured the fracture line, both types are caused by a strong shearing force against the wrist, typically associated with a

fall onto an outstretched or flexed hand (Judd, 2008). Clavicle fractures typically reflect compression forces resulting from falls where forces impact the shoulder (Judd and Roberts, 1999; Kihlstrom et al., 2017). It is possible that these three injuries reflect horseback riding accidents. Falling from a galloping horse will throw the rider forward, making the upper body the first to make contact with the ground. While clavicle and facial fractures are the most common, they are followed by trauma to the forearm (Altgarde et al., 2014; Ball et al., 2007; Berthon et al., 2021; Lee and Steenberg, 2008; Wentz and de Grummond, 2009).

All ten injured individuals exhibited vertebral trauma, with seven of them having more than one affected vertebra. Schmorl's nodes (Figure 6.1) were the most frequent type of injury, affecting 17 thoracic and seven lumbar vertebrae in nine individuals. The etiology of Schmorl's nodes is complex. While genetics, age, vertebral shape, and body weight can predispose certain individuals, the primary cause is repetitive and strenuous movement (Jurmain, 2013. P. 165167; Plomp et al., 2015; Plomp, 2023). Schmorl's nodes typically occur in the lower thoracic and lumbar vertebrae, with activities involving extensive use of the waist and back muscles, such as lifting, loading, and military training, being direct triggers (Burke, 2012; Waldron, 2020. P. 45; Zhang et al., 2017). Additionally, habitual horseback riding may contribute to the high prevalence of Schmorl's nodes in skeletal samples. Experienced riders lower their center of gravity to maintain balance on a galloping horse, causing repetitive hyperextension and rotation of the lower back and hips. This posture can result in the lower spine bearing around 65 % of the rider's weight, making it susceptible to fatigue injuries, such as Schmorl's nodes (Andelinovic et al., 2015; Berthon, 2019; Berthon et al., 2019; Glosten, 2015. P. 177-182).

Four cases of vertebral compression fractures (VCF; Figure 6.2-6.3)—one cervical, two thoracic, and one lumbar—were observed in three individuals. Similar to Schmorl's nodes, VCF often occur in thoracol-umbar vertebrae and have multiple etiologies, including age, sex, and pathological conditions such as osteoporosis. However, high-energy trauma that exerts excessive strain on the spine is the primary external cause (Curate, 2014; Genant et al., 1993; McCarthy and Davis, 2016). Contemporary medical records indicate that osteoporosis is the most common cause of

Fig. 5: Anterior (left) and posterior (right) views of the left and right radii of Nogoon Gozgor 1, Burial 5. The left radius exhibits a healed fracture of the distal shaft (indicated by the red circles); the right radius is unaffected Рис. 5. Антериальный (слева) и постериальный (справа) виды левой и правой лучевых костей с Ногоон Гозгор 1, погребение 5. На левой лучевой кости зафиксирован заживший перелом на дистальной части диафиза (обозначен красными кружками); правая лучевая кость без повреждений

VCF, particularly in females. Among patients younger than 80 years, most VCF result from falls and collisions (Donnally et al., 2023; Hoyt et al., 2020). In bioarchae-ology, VCF in non-elderly individuals, especially males, are typically attributed to strenuous activities and prolonged mechanical stress unless relevant pathological conditions are also observed (Jiménez-Brobeil et al., 2010; Kubo et al., 2024; Thomsen, 2022). The three individuals diagnosed with VCF in this research are males aged between 25 and 50 years. Therefore, external forces such as hyperextension, falls, and lifting are more likely to account for the VCF in these cases.

Notably, one case of VCF was observed on the sixth cervical vertebra on an individual with fused C5-7 (Figure 6.3). Cervical compression fractures are rare due to their anatomical shape, low weight bearing, and increased range of motion (Zmurko et al., 2003). Modern clinical reports indicate that most cervical VCF

are caused by hyperflexion or hyperextension during falls and collisions (Galloway and Wedel, 2014b; Leng et al., 2010; Okereke et al., 2021; Zmurko et al., 2003). A plausible explanation for this case is a horseback riding accident. An investigation into equestrian injuries revealed that approximately 25 % of riders who sustained head injuries also had neck injuries (Sandi-ford et al., 2013). The fusion of the vertebrae is likely a complication following the compression fracture, where blood enters the joint and increases the risk of ankylosis (Waldron, 2020. P. 146), or through ligamen-tous ossification or abnormal new bone formation during the healing process (Klaus and Lynnerup, 2019). It's also possible that certain joint diseases caused the vertebral fusion, whether related to the injury or not (Sieper et al., 2002; Waldron, 2020. P. 57-59).

Finally, two individuals exhibited spondylolysis (Figure 6.4) on the L5 and L6 vertebrae, respectively.

Fig. 6. Examples of vertebral trauma: 1) large Schmorl's node on the superior centrum of T7 vertebra, Urd'-Khiar 2 Burial 26 (right

superior view); 2) T9-12 vertebrae, Zun Khiaryn Denzh Burial 1, with compression fracture of T12 (right lateral view); 3) C5-7 vertebrae, Urd'-Khiar 2, Burial 26, with compression fracture of C6 and fusion of C5-7 (anterior left view on left, posterior view on right; 4) L5 vertebra of Urd'-Khiar 2, Burial 21, with complete bilateral spondylolysis and posterior arch missing postmortem (posterior view with superior centrum up in top image and inferior centrum up in bottom image) Рис. 6. Примеры травм позвоночника: 1) крупный узел Шморля на верхнем центре позвонка Т7 с Урд-Хяр 2, погребение 26 (вид сверху и справа); 2) Т9-12 позвонки с Зун Хярын Денж, погребение 1, с компрессионным переломом Т12 (вид справа и сбоку); 3) С5-7 позвонки с Урд-Хяр 2, погребение 26, с компрессионным переломом С6 и сращением С5-7 (вид слева и спереди, справа и сзади); 4) позвонок L5 с Урд-Хяр 2, погребение 21, с полным двусторонним спондилолизом и отсутствием постериальной дуги (вид сзади: верхний центр вверху на верхнем изображении и нижний центр вверху

на нижнем изображении)

Spondylolysis is a condition associated with human bipedalism, triggered by repetitive habitual or strenuous movements involving lateral flexion and hyperextension of the lower back (Hu et al., 2008; Plomp, 2023; Waldron, 2020. P. 151). This type of trauma is prevalent across various societies, including agrarian, foraging, and industrialized communities, and can be caused by a wide range of activities (Fibiger and Knusel, 2005; Lessa, 2011; Karapetian, 2021; Tipper et al., 2023). Although modern clinical research has not demonstrated a positive correlation between habitual horseback riding and spondylolysis (Kraft et al., 2009), falling from a horse can trigger such an injury (Karatas

et al., 2016), providing additional explanations for its occurrence.

Additionally, the traumatic injuries discussed above may have been caused by various other labour-intensive activities, including seasonal cultivation and metallurgy, which can be traced back to the first millennium BCE (Honeychurch et al., 2021; Hsu et al., 2020; Svyatko et al., 2017; Wilkin et al., 2020). Construction activities may also contribute to the observed trauma, given that some earlier habitation sites in the central Mongolian steppe began to urbanize into sedentary centers following the establishment of the Mongol Empire in the 13th century CE (Kradin et

al., 2016; Erdenebat et al., 2022). These factors should be considered alongside pastoral activities as potential causes of occupation and accidental trauma. Finally, it is worth pointing out that, despite our small sample sizes, males were more likely to exhibit traumatic lesions (7 out of 8, or 88 %) than were females (2 out of 4, or 50 %). This is consistent with both bioarchaeolog-ical and clinical research indicating that trauma is more common among males, especially young males, reflecting their more frequent engagement in high-risk activities and occupations (Bono, 2004; Karapetian 2021; Mansfield and Wroten, 2021; Sward, 1992; Waldron, 2020. P. 45).

4. Conclusion

In summary, this paper reviewed the classification and interpretation of paleotrauma on human re-

References

Alfonso-Durrruty, M.P., Giles, B.T., Misarti, N., San Roman, M. and Morello, F., 2015. Antiquity and geographic distribution of cranial modification among the prehistoric groups of F uego-Patagonia, Chile. American journal of physical anthropology, 158(4), pp.607-623. DOI: 10.1002/ajpa.22832.

Alghamdi, H.S., van den Beucken, J.J. and Jansen, J.A., 2014. Osteoporosis-fracture healing and osseointegration. Drug Discovery Today: Disease Models, 13, pp.3-9. DOI: 10.1016/j.ddmod.2014.10.001.

Altgarde, J., Redeen, S., Hilding, N. and Drott, P., 2014. Horse-related trauma in children and adults during a two year period. Scandinavian journal of trauma, resuscitation and emergency medicine, 22, pp.1-5. DOI: 10.1186/s13049-014-0040-8.

Alvrus, A., 1999. Fracture patterns among the Nubians of Semna South, Sudanese Nubia. International Journal of Osteoarchaeology, 9(6), pp.417-429. DOI: 10.1002/(SICI)1099-1212(199911/12)9:6<417::AID-OA509>3.0.CO;2-4.

Andelinovic, S., Anteric, I., Skoric, E. and Basic, Z., 2015. Skeleton changes induced by horse riding on medieval skeletal remains from Croatia. The International Journal of the History of Sport, 32(5), pp.708-721. DOI: 10.1080/09523367.2015.1038251.

Apergis, E., 2013. Fracture-Dislocations of the Wrist. 1st ed. Springer Milan: Imprint: Springer, pp. 1-305. DOI: 10.1007/978-88-470-5328-1_10.

Ball, C.G., Ball, J.E., Kirkpatrick, A.W. and Mulloy, R.H., 2007. Equestrian injuries: incidence, injury patterns, and risk factors for 10 years of major traumatic injuries. The American Journal of Surgery, 193(5), pp.636-640. DOI: 10.1016/j.amjsurg.2007.01.016.

Barss, P., Dakulala, P. and Doolan, M., 1984. Falls from trees and tree associated injuries in rural Melanesians. Br Med J (Clin Res Ed), 289(6460), pp.1717-1720. DOI:

mains, demonstrating its value as a tool for better understanding the past. In the case of the Khuvsgul and Tunka Valley cemeteries, results indicate that stress fractures on the spine are the most frequently documented lesions. These injuries likely reflect prolonged and strenuous activities. Pastoralists often engage in habitual horseback riding, long-distance movement, and the repeated construction of temporary camps, which could be the origins of the observed vertebral trauma. Most other injuries were concentrated on the upper body, many being consistent with animal-induced accidents such as from horseback riding. No weapon-induced or other violent trauma was identified, and all acute injuries were healed, suggesting a peaceful social environment and care during convalescence.

Список источников

Alfonso-Durrruty, M.P., Giles, B.T., Misarti, N., San Roman, M. and Morello, F., 2015. Antiquity and geographic distribution of cranial modification among the prehistoric groups of F uego-Patagonia, Chile. American journal of physical anthropology, 158(4), pp.607-623. DOI: 10.1002/ajpa.22832.

Alghamdi, H.S., van den Beucken, J.J. and Jansen, J.A., 2014. Osteoporosis-fracture healing and osseointegration. Drug Discovery Today: Disease Models, 13, pp.3-9. DOI: 10.1016/j.ddmod.2014.10.001.

Altgarde, J., Redeen, S., Hilding, N. and Drott, P., 2014. Horse-related trauma in children and adults during a two year period. Scandinavian journal of trauma, resuscitation and emergency medicine, 22, pp.1-5. DOI: 10.1186/s13049-014-0040-8.

Alvrus, A., 1999. Fracture patterns among the Nubians of Semna South, Sudanese Nubia. International Journal of Osteoarchaeology, 9(6), pp.417-429. DOI: 10.1002/(SICI)1099-1212(199911/12)9:6<417::AID-OA509>3.0.CO;2-4.

Andelinovic, S., Anteric, I., Skoric, E. and Basic, Z., 2015. Skeleton changes induced by horse riding on medieval skeletal remains from Croatia. The International Journal of the History of Sport, 32(5), pp.708-721. DOI: 10.1080/09523367.2015.1038251.

Apergis, E., 2013. Fracture-Dislocations of the Wrist. 1st ed. Springer Milan: Imprint: Springer, pp. 1-305. DOI: 10.1007/978-88-470-5328-1_10.

Ball, C.G., Ball, J.E., Kirkpatrick, A.W. and Mulloy, R.H., 2007. Equestrian injuries: incidence, injury patterns, and risk factors for 10 years of major traumatic injuries. The American Journal of Surgery, 193(5), pp.636-640. DOI: 10.1016/j.amjsurg.2007.01.016.

Barss, P., Dakulala, P. and Doolan, M., 1984. Falls from trees and tree associated injuries in rural Melanesians. Br Med J (Clin Res Ed), 289(6460), pp.1717-1720. DOI:

10.1136/bmj.289.6460.1717.

Bernbeck, R., 2008. Structural Violence in Archaeology. Archaeologies, 4(3), pp.390-413. DOI: 10.1007/s11759-008-9076-6.

Berthon, W., 2019. Bioarchaeological analysis of the mounted archers from the Hungarian Conquest period (10th century): Horse riding and activity-related skeletal changes. Szegedi Tudomanyegyetem (Hungary), pp. 1-246. DOI: 10.20330/AnthropKozl.2019.61.77.

Berthon, W., Baillif-Ducros, C., Fuka, M. and Djukic, K., 2023. Horse riding and the lower limbs. In: C.S. Hirst, R.J. Gilmour, K.A. Plomp, and F. Alves Cardoso, eds. Behaviour in our Bones. Elsevier, pp.219-253. DOI: 10.1016/b978-0-12-821383-4.00007-3.

Berthon, W., Tihanyi, B., Kis, L., Revesz, L., Coqueugniot, H., Dutour, O. and Palfi, G., 2019. Horse riding and the shape of the acetabulum: Insights from the bioarchaeological analysis of early Hungarian mounted archers (10th century). International Journal of Osteoarchaeology, 29(1), pp.117-126. DOI: 10.1002/oa.2723.

Berthon, W., Tihanyi, B., Varadi, O.A., Coqueugniot, H., Dutour, O. and Palfi, G., 2021. Riding for a fall: Bone fractures among mounted archers from the Hungarian Conquest period (10th century CE). International Journal of Osteoarchaeology, 31(5), pp.926-940. DOI: 10.1002/oa.3010.

Beshay, M., Mertzlufft, F., Kottkamp, H.W., Reymond, M., Schmid, R.A., Branscheid, D. and Vordemvenne, T., 2020. Analysis of risk factors in thoracic trauma patients with a comparison of a modern trauma centre: a mono-centre study. World Journal of Emergency Surgery, 15(1), pp.1-10. DOI: 10.1186/s13017-020-00324-1.

Bono, C.M., 2004. Low-back pain in athletes. The Journal of Bone and Joint Surgery, 86(2), pp.382-396. DOI: 10.2106/00004623-200402000-00027.

Bowyer, G., 2017. Injuries of the ankle and foot. In: Apley & Solomon's System of Orthopaedics and Trauma. CRC Press, pp.937-963. DOI: 10.1201/b13422-40.

Brickley, M. and Smith, M., 2006. Culturally determined patterns of violence: biological anthropological investigations at a historic urban cemetery. American Anthropologist, 108(1), pp.163-177. DOI: 10.1525/aa.2006.108.1.163.

Brickley, M.B. and Mays, S., 2019. Metabolic disease. In: J.E. Buikstra, ed. Ortner's Identification of Pathological Conditions in Human Skeletal Remains. Academic Press, pp.531-566. DOI: 10.1016/b978-0-12-809738-0.00015-6.

Bright, L.N., 2020. Structural violence. In: C.M. Cheverko, J.R. Prince-Buitenhuys, and M. Hubbe, eds. Theoretical Approaches in Bioarchaeology. London: Routledge, pp.131-149. DOI: 10.4324/9780429262340-9.

Brooks, S. and Suchey, J.M., 1990. Skeletal age determination based on the os pubis: a comparison of the Acsadi-Nemeskeri and Suchey-Brooks methods. Human Evolution, 5, pp.227-238. DOI: 10.1007/BF02437238.

Buckberry, J.L. and Chamberlain, A.T., 2002. Age estimation from the auricular surface of the ilium: a revised method. American Journal of Physical Anthropology, 119(3), pp.231-239. DOI: 10.1002/ajpa.10130.

Buikstra, J.E. and Ubelaker, D.H., 1994. Standards for

10.1136/bmj.289.6460.1717.

Bernbeck, R., 2008. Structural Violence in Archaeology. Archaeologies, 4(3), pp.390-413. DOI: 10.1007/s11759-008-9076-6.

Berthon, W., 2019. Bioarchaeological analysis of the mounted archers from the Hungarian Conquest period (10th century): Horse riding and activity-related skeletal changes. Szegedi Tudomanyegyetem (Hungary), pp. 1-246. DOI: 10.20330/AnthropKozl.2019.61.77.

Berthon, W., Baillif-Ducros, C., Fuka, M. and Djukic, K., 2023. Horse riding and the lower limbs. In: C.S. Hirst, R.J. Gilmour, K.A. Plomp, and F. Alves Cardoso, eds. Behaviour in our Bones. Elsevier, pp.219-253. DOI: 10.1016/b978-0-12-821383-4.00007-3.

Berthon, W., Tihanyi, B., Kis, L., Revesz, L., Coqueugniot, H., Dutour, O. and Palfi, G., 2019. Horse riding and the shape of the acetabulum: Insights from the bioarchaeological analysis of early Hungarian mounted archers (10th century). International Journal of Osteoarchaeology, 29(1), pp.117-126. DOI: 10.1002/oa.2723.

Berthon, W., Tihanyi, B., Varadi, O.A., Coqueugniot, H., Dutour, O. and Palfi, G., 2021. Riding for a fall: Bone fractures among mounted archers from the Hungarian Conquest period (10th century CE). International Journal of Osteoarchaeology, 31(5), pp.926-940. DOI: 10.1002/oa.3010.

Beshay, M., Mertzlufft, F., Kottkamp, H.W., Reymond, M., Schmid, R.A., Branscheid, D. and Vordemvenne, T., 2020. Analysis of risk factors in thoracic trauma patients with a comparison of a modern trauma centre: a mono-centre study. World Journal of Emergency Surgery, 15(1), pp.1-10. DOI: 10.1186/s13017-020-00324-1.

Bono, C.M., 2004. Low-back pain in athletes. The Journal of Bone and Joint Surgery, 86(2), pp.382-396. DOI: 10.2106/00004623-200402000-00027.

Bowyer, G., 2017. Injuries of the ankle and foot. In: Apley & Solomon's System of Orthopaedics and Trauma. CRC Press, pp.937-963. DOI: 10.1201/b13422-40.

Brickley, M. and Smith, M., 2006. Culturally determined patterns of violence: biological anthropological investigations at a historic urban cemetery. American Anthropologist, 108(1), pp.163-177. DOI: 10.1525/aa.2006.108.1.163.

Brickley, M.B. and Mays, S., 2019. Metabolic disease. In: J.E. Buikstra, ed. Ortner's Identification of Pathological Conditions in Human Skeletal Remains. Academic Press, pp.531-566. DOI: 10.1016/b978-0-12-809738-0.00015-6.

Bright, L.N., 2020. Structural violence. In: C.M. Cheverko, J.R. Prince-Buitenhuys, and M. Hubbe, eds. Theoretical Approaches in Bioarchaeology. London: Routledge, pp.131-149. DOI: 10.4324/9780429262340-9.

Brooks, S. and Suchey, J.M., 1990. Skeletal age determination based on the os pubis: a comparison of the Acsadi-Nemeskeri and Suchey-Brooks methods. Human Evolution, 5, pp.227-238. DOI: 10.1007/BF02437238.

Buckberry, J.L. and Chamberlain, A.T., 2002. Age estimation from the auricular surface of the ilium: a revised method. American Journal of Physical Anthropology, 119(3), pp.231-239. DOI: 10.1002/ajpa.10130.

Buikstra, J.E. and Ubelaker, D.H., 1994. Standards for

Data Collection from Human Skeletal Remains. Arkansas Archaeological Survey Research Series, 44, p.18.

Burke, K.L., 2012. Schmorl's nodes in an American military population: Frequency, Formation, and Etiology. Journal of Forensic Sciences, 57(3), pp.571-577. DOI: 10.1111/j.1556-4029.2011.01992.x.

Bury, D., Langlois, N. and Byard, R.W., 2012. Animal -related fatalities - part I: Characteristic autopsy findings and variable causes of death associated with blunt and sharp trauma. Journal of Forensic Sciences, 57(2), pp. 370-374. DOI: 10.1111/j.1556-4029.2011.01921.x.

Busch, H.M. Jr., Cogbill, T.H., Landercasper, J. and Landercasper, B.O., 1986. Blunt bovine and equine trauma. The Journal of Trauma, 26(6), pp. 559-560. DOI: 10.1097/00005373-198606000-00013.

Chen, F. and Kalainov, D.M., 2016. Phalanx fractures and dislocations in athletes. Current Reviews in Musculoskeletal Medicine, 10, pp.10-16. DOI: 10.1007/s12178-017-9378-7.

Cheverko, C.M., Prince-Buitenhuys, J.R. and Hubbe, M., 2020. Theory in Bioarchaeology, an Introduction. In: C.M. Cheverko, J.R. Prince-Buitenhuys, and M. Hubbe, eds. Theoretical Approaches in Bioarchaeology. London: Routledge, pp.1-14. DOI: 10.4324/9780429262340-1.

Christensen, A.M., Passalacqua, N.V. and Bartelink, E.J., 2019. Forensic Anthropology: Current Methods and Practice. Academic Press, pp. 1-448. DOI: 10.1016/b978-0-12-815734-3.00006-3.

Cole, A., 2017. The shoulder and pectoral girdle. In: Apley & Solomon's System of Orthopaedics and Trauma. CRC Press, pp.351-381. DOI: 10.1201/b13422-21.

Cole, P.A., Gauger, E.M. and Schroder, L.K., 2012. Management of scapular fractures. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 20(3), pp.130141. DOI: 10.5435/JAAOS-20-03-130.

Cunningham, C., Scheuer, L. and Black, S., 2016. Developmental Juvenile Osteology. Academic Press, pp. 1472. DOI: 10.1016/c2009-0-63841-1.

Curate, F., 2014. Osteoporosis and paleopathology: a review. Journal of Anthropological Sciences: Rivista di Antropologia, 92, pp.119-146. DOI: 10.4436/JASS.92003.

Dodson, P. and Wexlar, D., 1979. Taphonomic investigations of owl pellets. Paleobiology, 5(3), pp.275-284. DOI: 10.1017/S0094837300006564.

Donnally, C.J. III, DiPompeo, C.M. and Varacallo, M., 2023. Vertebral compression fractures. StatPearls Publishing LLC., Treasure Island, FL, USA. PMID: 28846351.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Eng, J.T., 2016. A bioarchaeological study of osteoarthritis among populations of northern China and Mongolia during the Bronze Age to Iron Age transition to nomadic pastoralism. Quaternary International, 405, pp.172185. DOI: 10.1016/j.quaint.2015.07.072.

Erdenebat, U., Burentogtokh, J. and Honeychurch, W., 2022. The archaeology of the Mongol Empire. In: The Mongol World.Routledge,pp.507-533.DOI:

10.4324/9781315165172-42.

Faccia, K.J. and Williams, R.C., 2008. Schmorl's nodes: clinical significance and implications for the bioarchaeological

Data Collection from Human Skeletal Remains. Arkansas Archaeological Survey Research Series, 44, p.18.

Burke, K.L., 2012. Schmorl's nodes in an American military population: Frequency, Formation, and Etiology. Journal of Forensic Sciences, 57(3), pp.571-577. DOI: 10.1111/j.1556-4029.2011.01992.x.

Bury, D., Langlois, N. and Byard, R.W., 2012. Animal-related fatalities - part I: Characteristic autopsy findings and variable causes of death associated with blunt and sharp trauma. Journal of Forensic Sciences, 57(2), pp. 370-374. DOI: 10.1111/j.1556-4029.2011.01921.x.

Busch, H.M. Jr., Cogbill, T.H., Landercasper, J. and Landercasper, B.O., 1986. Blunt bovine and equine trauma. The Journal of Trauma, 26(6), pp. 559-560. DOI: 10.1097/00005373-198606000-00013.

Chen, F. and Kalainov, D.M., 2016. Phalanx fractures and dislocations in athletes. Current Reviews in Musculoskeletal Medicine, 10, pp.10-16. DOI: 10.1007/s12178-017-9378-7.

Cheverko, C.M., Prince-Buitenhuys, J.R. and Hubbe, M., 2020. Theory in Bioarchaeology, an Introduction. In: C.M. Cheverko, J.R. Prince-Buitenhuys, and M. Hubbe, eds. Theoretical Approaches in Bioarchaeology. London: Routledge, pp.1-14. DOI: 10.4324/9780429262340-1.

Christensen, A.M., Passalacqua, N.V. and Bartelink, E.J., 2019. Forensic Anthropology: Current Methods and Practice. Academic Press, pp. 1-448. DOI: 10.1016/b978-0-12-815734-3.00006-3.

Cole, A., 2017. The shoulder and pectoral girdle. In: Apley & Solomon's System of Orthopaedics and Trauma. CRC Press, pp.351-381. DOI: 10.1201/b13422-21.

Cole, P.A., Gauger, E.M. and Schroder, L.K., 2012. Management of scapular fractures. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 20(3), pp.130141. DOI: 10.5435/JAAOS-20-03-130.

Cunningham, C., Scheuer, L. and Black, S., 2016. Developmental Juvenile Osteology. Academic Press, pp. 1472. DOI: 10.1016/c2009-0-63841-1.

Curate, F., 2014. Osteoporosis and paleopathology: a review. Journal of Anthropological Sciences: Rivista di Antropologia, 92, pp.119-146. DOI: 10.4436/JASS.92003.

Dodson, P. and Wexlar, D., 1979. Taphonomic investigations of owl pellets. Paleobiology, 5(3), pp.275-284. DOI: 10.1017/S0094837300006564.

Donnally, C.J. III, DiPompeo, C.M. and Varacallo, M., 2023. Vertebral compression fractures. StatPearls Publishing LLC., Treasure Island, FL, USA. PMID: 28846351.

Eng, J.T., 2016. A bioarchaeological study of osteoarthritis among populations of northern China and Mongolia during the Bronze Age to Iron Age transition to nomadic pastoralism. Quaternary International, 405, pp.172185. DOI: 10.1016/j.quaint.2015.07.072.

Erdenebat, U., Burentogtokh, J. and Honeychurch, W., 2022. The archaeology of the Mongol Empire. In: The Mongol World.Routledge,pp.507-533.DOI:

10.4324/9781315165172-42.

Faccia, K.J. and Williams, R.C., 2008. Schmorl's nodes: clinical significance and implications for the bioarchaeological

record. International Journal of Osteoarchaeology, 18(1), pp.28-44. DOI: 10.1002/oa.924.

Faldini, C., Nanni, M., Leonetti, D., Acri, F., Galante, C., Luciani, D. and Giannini, S., 2010. Nonoperative treatment of closed displaced midshaft clavicle fractures. Journal of Orthopaedics and Traumatology, 11, pp.229-236. DOI: 10.1007/s10195-010-0113-z.

Fibiger, L. and Knüsel, C.J., 2005. Prevalence rates of spondylolysis in British skeletal populations. International Journal of Osteoarchaeology, 15(3), pp.164-174. DOI: 10.1002/oa.766.

Flensborg, G., Serna, A. and Prates, L., 2019. Oral Stress and Paleodiet Changes Among Hunter-gatherers from Negro River (northern Patagonia, Argentina) During the Late Holocene. International Journal of Osteoarchaeology, 29(6), pp.1060-1071. DOI: 10.1002/oa.2819.

Galloway, A., 2014a. The upper extremity. In: Broken Bones: Anthropological Analysis of Blunt Force Trauma. 2nd ed. Springfield, Illinois: Charles C. Thomas Publisher, LTD, pp.195-243.

Galloway, A., 2014b. The lower extremity. In: Broken Bones: Anthropological Analysis of Blunt Force Trauma. 2nd ed. Springfield, Illinois: Charles C. Thomas Publisher, LTD, pp.245-308.

Galloway, A. and Wedel, V.L., 2014a. Bones of the skull, the dentition, and osseous structures of the throat. In: Broken Bones: Anthropological Analysis of Blunt Force Trauma. 2nd ed. Springfield, Illinois: Charles C. Thomas Publisher, LTD, pp.133-160.

Galloway, A. and Wedel, V., 2014b. Common circumstances of blunt force trauma. In: Broken Bones: Anthropological Analysis of Blunt Force Trauma. 2nd ed. Springfield, Illinois: Charles C. Thomas Publisher, LTD, pp.91130.

Galloway, A. and Wedel, V., 2014c. The Axial Skeleton. In: Broken Bones: Anthropological Analysis of Blunt Force Trauma. 2nd ed. Springfield, Illinois: Charles C. Thomas Publisher, LTD, pp.161-194.

Galloway, A., Zephro, L. and Wedel, V.L., 2014a. Classification of fractures. In: Broken Bones: Anthropological Analysis of Blunt Force Trauma. 2nd ed. Springfield, Illinois: Charles C. Thomas Publisher, LTD, pp.59-72.

Galloway, A., Zephro, L. and Wedel, V.L., 2014b. Diagnostic criteria for the determination of timing and fracture mechanism. In: Broken Bones: Anthropological Analysis of Blunt Force Trauma. 2nd ed. Springfield, Illinois: Charles C. Thomas Publisher, LTD, pp.47-58.

Galloway, A., Wedel, V. and Zephro, L., 2014c. Processes and procedures for trauma analysis. In: Broken Bones: Anthropological Analysis of Blunt Force Trauma. 2nd ed. Springfield, Illinois: Charles C. Thomas Publisher, LTD, pp.11-31.

Genant, H.K., Wu, C.Y., Van Kuijk, C. and Nevitt, M.C., 1993. Vertebral fracture assessment using a semiquantitative technique. Journal of Bone and Mineral Research, 8(9), pp.1137-1148. DOI: 10.1002/jbmr.5650080915.

Gibson, R., 2015. Effects of long term corseting on the female skeleton: A preliminary morphological examination.

record. International Journal of Osteoarchaeology, 18(1), pp.28-44. DOI: 10.1002/oa.924.

Faldini, C., Nanni, M., Leonetti, D., Acri, F., Galante, C., Luciani, D. and Giannini, S., 2010. Nonoperative treatment of closed displaced midshaft clavicle fractures. Journal of Orthopaedics and Traumatology, 11, pp.229-236. DOI: 10.1007/s10195-010-0113-z.

Fibiger, L. and Knüsel, C.J., 2005. Prevalence rates of spondylolysis in British skeletal populations. International Journal of Osteoarchaeology, 15(3), pp.164-174. DOI: 10.1002/oa.766.

Flensborg, G., Serna, A. and Prates, L., 2019. Oral Stress and Paleodiet Changes Among Hunter-gatherers from Negro River (northern Patagonia, Argentina) During the Late Holocene. International Journal of Osteoarchaeology, 29(6), pp.1060-1071. DOI: 10.1002/oa.2819.

Galloway, A., 2014a. The upper extremity. In: Broken Bones: Anthropological Analysis of Blunt Force Trauma. 2nd ed. Springfield, Illinois: Charles C. Thomas Publisher, LTD, pp.195-243.

Galloway, A., 2014b. The lower extremity. In: Broken Bones: Anthropological Analysis of Blunt Force Trauma. 2nd ed. Springfield, Illinois: Charles C. Thomas Publisher, LTD, pp.245-308.

Galloway, A. and Wedel, V.L., 2014a. Bones of the skull, the dentition, and osseous structures of the throat. In: Broken Bones: Anthropological Analysis of Blunt Force Trauma. 2nd ed. Springfield, Illinois: Charles C. Thomas Publisher, LTD, pp.133-160.

Galloway, A. and Wedel, V., 2014b. Common circumstances of blunt force trauma. In: Broken Bones: Anthropological Analysis of Blunt Force Trauma. 2nd ed. Springfield, Illinois: Charles C. Thomas Publisher, LTD, pp.91130.

Galloway, A. and Wedel, V., 2014c. The Axial Skeleton. In: Broken Bones: Anthropological Analysis of Blunt Force Trauma. 2nd ed. Springfield, Illinois: Charles C. Thomas Publisher, LTD, pp.161-194.

Galloway, A., Zephro, L. and Wedel, V.L., 2014a. Classification of fractures. In: Broken Bones: Anthropological Analysis of Blunt Force Trauma. 2nd ed. Springfield, Illinois: Charles C. Thomas Publisher, LTD, pp.59-72.

Galloway, A., Zephro, L. and Wedel, V.L., 2014b. Diagnostic criteria for the determination of timing and fracture mechanism. In: Broken Bones: Anthropological Analysis of Blunt Force Trauma. 2nd ed. Springfield, Illinois: Charles C. Thomas Publisher, LTD, pp.47-58.

Galloway, A., Wedel, V. and Zephro, L., 2014c. Processes and procedures for trauma analysis. In: Broken Bones: Anthropological Analysis of Blunt Force Trauma. 2nd ed. Springfield, Illinois: Charles C. Thomas Publisher, LTD, pp.11-31.

Genant, H.K., Wu, C.Y., Van Kuijk, C. and Nevitt, M.C., 1993. Vertebral fracture assessment using a semiquantitative technique. Journal of Bone and Mineral Research, 8(9), pp.1137-1148. DOI: 10.1002/jbmr.5650080915.

Gibson, R., 2015. Effects of long term corseting on the female skeleton: A preliminary morphological examination.

Nexus: The Canadian Student Journal of Anthropology, 23(2), pp.45-60. DOI: 10.15173/nexus.v23i2.983.

Glosten, B., 2015. The Riding Doctor: A Prescription for Healthy, Balanced, and Beautiful Riding, Now and for Years to Come. Trafalgar Square Books, pp. 1-218.

Honeychurch, W., 2013. The nomad as state builder: Historical theory and material evidence from Mongolia. Journal of World Prehistory, 26, pp.283-321. DOI: 10.1007/s10963-013-9069-2.

Honeychurch, W., Rogers, L., Amartuvshin, C., Diimaajav, E., Erdene-Ochir, N., Hall, M.E. and Hrivnyak, M., 2021. The earliest herders of East Asia: examining Afanasievo entry to Central Mongolia. Archaeological Research in Asia, 26, p.100264. DOI: 10.1016/j.ara.2021.100264.

Hoyt, D., Urits, I., Orhurhu, V., Orhurhu, M.S., Callan, J., Powell, J., Manchikanti, L., Kaye, A.D., Kaye, R.J. and Viswanath, O., 2020. Current concepts in the management of vertebral compression fractures. Current Pain and Headache Reports, 24, pp.1-10. DOI: 10.1007/s11916-020-00849-9.

Hsu, Y.K., Sabatini, B., Bayarkhuu, N., Turbat, T., Giscard, P.H. and Klein, S., 2020. Discerning Social Interaction and Cultural Influence in Early Iron Age Mongolia through Archaeometallurgical Investigation. Archaeological and Anthropological Sciences, 12(1). DOI: 10.1007/s12520-019-00952-y.

Hu, S.S., Tribus, C.B., Diab, M. and Ghanayem, A.J., 2008. Spondylolisthesis and spondylolysis. The Journal of Bone and Joint Surgery, 90(3), pp.656-671. DOI: 10.1016/S0021-9355(08)72966-7.

Jiménez-Brobeil, S.A., Oumaoui, I.A. and Souich, P.D., 2010. Some types of vertebral pathologies in the Argar Culture (Bronze Age, SE Spain). International Journal of Osteoarchaeology, 20(1), pp.36-46. DOI: 10.1002/oa.1003.

Judd, M., 2002. Ancient injury recidivism: an example from the Kerma period of ancient Nubia. International Journal of Osteoarchaeology, 12(2), pp.89-106. DOI: 10.1002/oa.587.

Judd, M.A., 2006. Continuity of interpersonal violence between Nubian communities. American Journal of Physical Anthropology, 131(3), pp.324-333. DOI: 10.1002/ajpa.20401.

Judd, M.A., 2008. The Parry Problem. Journal of Archaeological Science, 35(6), pp.1658-1666. DOI: 10.1016/j.jas.2007.11.005.

Judd, M.A. and Roberts, C.A., 1999. Fracture trauma in a medieval British farming village. American Journal of Physical Anthropology, 109(2), pp.229-243. DOI: 10.1002/(SICI)1096-8644(199906)109:2<229::AID-AJPA7>3.0.QD;2-Y.

Judd, M.A. and Redfern, R., 2012. Trauma. In: A.L. Grauer, ed. A Companion to Paleopathology. Oxford: Wiley Blackwell, pp.359-379. DOI: 10.1002/9781444345940.ch20.

Jurmain, R., 2013. Stories from the Skeleton: Behavioral Reconstruction in Human Osteology. Routledge, pp. 1-329. DOI: 10.4324/9780203727072.

Karapetian, M., 2021. Lumbar spondylolysis in ancient Siberian Eskimo. International Journal of Osteoarchaeology, 31(2), pp.316-321. DOI: 10.1002/oa.2934.

Karatas, A.F., Dede, O., Atanda, A.A., Holmes Jr, L., Rogers, K., Gabos, P. and Shah, S.A., 2016. Comparison of direct pars repair techniques of spondylolysis in pediatric and

Nexus: The Canadian Student Journal of Anthropology, 23(2), pp.45-60. DOI: 10.15173/nexus.v23i2.983.

Glosten, B., 2015. The Riding Doctor: A Prescription for Healthy, Balanced, and Beautiful Riding, Now and for Years to Come. Trafalgar Square Books, pp. 1-218.

Honeychurch, W., 2013. The nomad as state builder: Historical theory and material evidence from Mongolia. Journal of World Prehistory, 26, pp.283-321. DOI: 10.1007/s10963-013-9069-2.

Honeychurch, W., Rogers, L., Amartuvshin, C., Diimaajav, E., Erdene-Ochir, N., Hall, M.E. and Hrivnyak, M., 2021. The earliest herders of East Asia: examining Afanasievo entry to Central Mongolia. Archaeological Research in Asia, 26, p.100264. DOI: 10.1016/j.ara.2021.100264.

Hoyt, D., Urits, I., Orhurhu, V., Orhurhu, M.S., Callan, J., Powell, J., Manchikanti, L., Kaye, A.D., Kaye, R.J. and Viswanath, O., 2020. Current concepts in the management of vertebral compression fractures. Current Pain and Headache Reports, 24, pp.1-10. DOI: 10.1007/s11916-020-00849-9.

Hsu, Y.K., Sabatini, B., Bayarkhuu, N., Turbat, T., Giscard, P.H. and Klein, S., 2020. Discerning Social Interaction and Cultural Influence in Early Iron Age Mongolia through Archaeometallurgical Investigation. Archaeological and Anthropological Sciences, 12(1). DOI: 10.1007/s12520-019-00952-y.

Hu, S.S., Tribus, C.B., Diab, M. and Ghanayem, A.J., 2008. Spondylolisthesis and spondylolysis. The Journal of Bone and Joint Surgery, 90(3), pp.656-671. DOI: 10.1016/S0021-9355(08)72966-7.

Jiménez-Brobeil, S.A., Oumaoui, I.A. and Souich, P.D., 2010. Some types of vertebral pathologies in the Argar Culture (Bronze Age, SE Spain). International Journal of Osteoarchaeology, 20(1), pp.36-46. DOI: 10.1002/oa.1003.

Judd, M., 2002. Ancient injury recidivism: an example from the Kerma period of ancient Nubia. International Journal of Osteoarchaeology, 12(2), pp.89-106. DOI: 10.1002/oa.587.

Judd, M.A., 2006. Continuity of interpersonal violence between Nubian communities. American Journal of Physical Anthropology, 131(3), pp.324-333. DOI: 10.1002/ajpa.20401.

Judd, M.A., 2008. The Parry Problem. Journal of Archaeological Science, 35(6), pp.1658-1666. DOI: 10.1016/j.jas.2007.11.005.

Judd, M.A. and Roberts, C.A., 1999. Fracture trauma in a medieval British farming village. American Journal of Physical Anthropology, 109(2), pp.229-243. DOI: 10.1002/(SICI)1096-8644(199906)109:2<229::AID-AJPA7>3.0.CO;2-Y.

Judd, M.A. and Redfern, R., 2012. Trauma. In: A.L. Grauer, ed. A Companion to Paleopathology. Oxford: Wiley Blackwell, pp.359-379. DOI: 10.1002/9781444345940.ch20.

Jurmain, R., 2013. Stories from the Skeleton: Behavioral Reconstruction in Human Osteology. Routledge, pp. 1-329. DOI: 10.4324/9780203727072.

Karapetian, M., 2021. Lumbar spondylolysis in ancient Siberian Eskimo. International Journal of Osteoarchaeology, 31(2), pp.316-321. DOI: 10.1002/oa.2934.

Karatas, A.F., Dede, O., Atanda, A.A., Holmes Jr, L., Rogers, K., Gabos, P. and Shah, S.A., 2016. Comparison of direct pars repair techniques of spondylolysis in pediatric and

adolescent patients: pars compression screw versus pedicle screw-rod-hook. Clinical Spine Surgery, 29(7), pp.272-280. DOI: 10.1097/bsd.0b013e318277cb7d.

Kharinskii, A.V., 2023. Use of Parts of Ram Carcasses in the Funerary Practices of the Baikal Region Population in the 13th—14th Centuries. Archaeology, Ethnology & Anthropology of Eurasia, 51(1), pp.146-153. DOI: 10.17746/15630110.2023.51.1.146-153.

Kharinskii, A.V., Erdenebaatar, D., Portniagin, M.A., Argilbayar, S. and Kichigin, D.E., 2020. Female Burials in the Thirteenth Through Fourteenth Centuries. The Nogoon Gozgor 1 Burial Site in the Northern Khövsgöl Area. Anthropology & Archeology of Eurasia, 59(2), pp.84-111. DOI: 10.1080/10611959.2020.1950476.

Kihlström, C., Möller, M., Lönn, K. and Wolf, O., 2017. Clavicle fractures: epidemiology, classification and treatment of 2,422 fractures in the Swedish Fracture Register; an observational study. BMC Musculoskeletal Disorders, 18, pp.1-9. DOI: 10.1186/s12891-017-1444-1.

Klaus, H.D., 2012. The Bioarchaeology of Structural Violence A Theoretical Model and a Case Study. In: D.L. Martin, R.P. Harrod and V.R. Pérez, eds. The Bioarchaeology of Violence. Bioarchaeological Interpretations of the Human Past: Local, Regional, and Global. Gainesville: University Press of Florida, pp.29-62. DOI: 10.5744/florida/9780813041506.003.0003.

Klaus, H.D. and Lynnerup, N., 2019. Abnormal bone: considerations for documentation, disease process identification, and differential diagnosis. In: J.E. Buikstra, ed. Ortner's Identification of Pathological Conditions in Human Skeletal Remains. Academic Press, pp.59-89. DOI: 10.1016/b978-0-12-809738-0.00005-3.

Knüsel, C., 2000. Bone adaptation and its relationship to physical activity in the past. In: M. Cox and S. Mays, eds. Human Osteology in Archaeology and Forensic Science. London: Greenwich Medical Media, pp.381-402.

Kozyrev, A., Shchetnikov, A., Klement'ev, A., Filinov, I.A., Fedorenko, A. and White, D., 2014. The Early Upper Palaeolithic of the Tunka Rift Valley, Lake Baikal Region, Siberia. Quaternary International, 348, pp.4-13. DOI: 10.1016/j.quaint.2014.06.012.

Kradin, N.N., 2011. Stateless Empire: the Structure of the Xiongnu Nomadic Super-Complex Chiefdom. In: U. Brosseder and B.K. Miller, eds. Xiongnu Archaeology: Multidisciplinary Perspectives of the First Steppe Empire in Inner Asia. Rheinische Friedrich-Wilhelms Universität, Bonn, pp.77-96.

Kraft, C.N., Pennekamp, P.H., Becker, U., Young, M., Diedrich, O., Lüring, C. and von Falkenhausen, M., 2009. Magnetic resonance imaging findings of the lumbar spine in elite horseback riders: correlations with back pain, body mass index, trunk/leg-length coefficient, and riding discipline. The American Journal of Sports Medicine, 37(11), pp. 2205-2213. DOI: 10.1177/0363546509336927.

Kubo, D., Komagino, T. and Matsumura, H., 2024. Prevalent vertebral compression fractures in the lower thoracolumbar spine of the Okhotsk culture human remains from the Moyoro shell mound site, Hokkaido in Japan. Asian

adolescent patients: pars compression screw versus pedicle screw-rod-hook. Clinical Spine Surgery, 29(7), pp.272-280. DOI: 10.1097/bsd.0b013e318277cb7d.

Kharinskii, A.V., 2023. Use of Parts of Ram Carcasses in the Funerary Practices of the Baikal Region Population in the 13th—14th Centuries. Archaeology, Ethnology & Anthropology of Eurasia, 51(1), pp.146-153. DOI: 10.17746/15630110.2023.51.1.146-153.

Kharinskii, A.V., Erdenebaatar, D., Portniagin, M.A., Argilbayar, S. and Kichigin, D.E., 2020. Female Burials in the Thirteenth Through Fourteenth Centuries. The Nogoon Gozgor 1 Burial Site in the Northern Khövsgöl Area. Anthropology & Archeology of Eurasia, 59(2), pp.84-111. DOI: 10.1080/10611959.2020.1950476.

Kihlström, C., Möller, M., Lönn, K. and Wolf, O., 2017. Clavicle fractures: epidemiology, classification and treatment of 2,422 fractures in the Swedish Fracture Register; an observational study. BMC Musculoskeletal Disorders, 18, pp.1-9. DOI: 10.1186/s12891-017-1444-1.

Klaus, H.D., 2012. The Bioarchaeology of Structural Violence A Theoretical Model and a Case Study. In: D.L. Martin, R.P. Harrod and V.R. Pérez, eds. The Bioarchaeology of Violence. Bioarchaeological Interpretations of the Human Past: Local, Regional, and Global. Gainesville: University Press of Florida, pp.29-62. DOI: 10.5744/florida/9780813041506.003.0003.

Klaus, H.D. and Lynnerup, N., 2019. Abnormal bone: considerations for documentation, disease process identification, and differential diagnosis. In: J.E. Buikstra, ed. Ortner's Identification of Pathological Conditions in Human Skeletal Remains. Academic Press, pp.59-89. DOI: 10.1016/b978-0-12-809738-0.00005-3.

Knüsel, C., 2000. Bone adaptation and its relationship to physical activity in the past. In: M. Cox and S. Mays, eds. Human Osteology in Archaeology and Forensic Science. London: Greenwich Medical Media, pp.381-402.

Kozyrev, A., Shchetnikov, A., Klement'ev, A., Filinov, I.A., Fedorenko, A. and White, D., 2014. The Early Upper Palaeolithic of the Tunka Rift Valley, Lake Baikal Region, Siberia. Quaternary International, 348, pp.4-13. DOI: 10.1016/j.quaint.2014.06.012.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Kradin, N.N., 2011. Stateless Empire: the Structure of the Xiongnu Nomadic Super-Complex Chiefdom. In: U. Brosseder and B.K. Miller, eds. Xiongnu Archaeology: Multidisciplinary Perspectives of the First Steppe Empire in Inner Asia. Rheinische Friedrich-Wilhelms Universität, Bonn, pp.77-96.

Kraft, C.N., Pennekamp, P.H., Becker, U., Young, M., Diedrich, O., Lüring, C. and von Falkenhausen, M., 2009. Magnetic resonance imaging findings of the lumbar spine in elite horseback riders: correlations with back pain, body mass index, trunk/leg-length coefficient, and riding discipline. The American Journal of Sports Medicine, 37(11), pp. 2205-2213. DOI: 10.1177/0363546509336927.

Kubo, D., Komagino, T. and Matsumura, H., 2024. Prevalent vertebral compression fractures in the lower thoracolumbar spine of the Okhotsk culture human remains from the Moyoro shell mound site, Hokkaido in Japan. Asian

Journal of Paleopathology, 6, pp.17-23. DOI: 10.32247/ajp2024.6.04.

Lambert, P.M. and Welker, M.H., 2019. Revisiting Traumatic Injury Risk and Agricultural Intensification: Postcranial Fracture Frequency at Cerro Oreja in the Moche Valley of North Coastal Peru. American Journal of Physical Anthropology, 169(1), pp.143-151. DOI: 10.1002/ajpa.23801.

Lee, K.H. and Steenberg, L.J., 2008. Equine-Related Facial Fractures. International Journal of Oral and Maxillofacial Surgery, 37(11), pp.999-1002. DOI: 10.1016/j.ijom.2008.05.009.

Leng, L.Z., Shajari, M. and Härtl, R., 2010. Management of acute cervical compression fractures in two patients with osteogenesis imperfecta. Spine, 35(22), pp.E1248-E1252. DOI: 10.1097/BRS.0b013e3181dfcae5.

Lessa, A., 2011. Spondylolysis and lifestyle among prehistoric coastal groups from Brazil. International Journal of Osteoarchaeology, 21(6), pp.660-668. DOI: 10.1002/oa.1172.

Losey, R.J., Ivanov, A.V., Palesskiy, S.V. and Bazaliiskii, V.I., 2016. Geochemical Analyses of Marmot Teeth to Evaluate the Potential for Overlapping Foraging Ranges in Two Siberian Human Cemetery Populations. Journal of Ethnobiology, 36(3), pp.493-511. DOI: 10.2993/0278-077136.3.493.

Lovell, N.C., 1997. Trauma analysis in paleopathology. American Journal of Physical Anthropology, 104(S25), pp.139170. DOI: 10.1002/(SICI)1096-8644(1997)25+<139::AID-AJPA6>3.0.CO;2-%23.

Lovell, N.C. and Grauer, A.L., 2019. Analysis and interpretation of trauma in skeletal remains. In: M.A. Katzenberg and A.L. Grauer, eds. Biological Anthropology of the Human Skeleton. 3rd ed. Oxford: Wiley Blackwell, pp.335383. DOI: 10.1002/9781119151647.ch10.

Mansfield, J.T. and Wroten, M., 2021. Pars Interarticularis defect. In StatPearls. Treasure Island (FL): StatPearls Publishing. PMID: 30855876.

Mant, M., 2019. Time after Time: Individuals with Multiple Fractures and Injury Recidivists in Long Eighteenth-century (c. 1666-1837) London. International Journal of Paleopathology, 24, pp.7-18. DOI: 10.1016/j.ijpp.2018.08.003.

Mant, M., de la Cova, C. and Brickley, M.B., 2021. Intersectionality and trauma analysis in bioarchaeology. American Journal of Physical Anthropology, 174(4), pp.583594. DOI: 10.1002/ajpa.24226.

May, T., 2022. The Rise of Chinggis Khan. In: The Mongol World. Routledge, pp.51-67. DOI: 10.4324/9781315165172-6.

Mayall, P., Pilbrow, V. and Bitadze, L., 2017. Migrating Huns and modified heads: Eigenshape analysis comparing intentionally modified crania from Hungary and Georgia in the Migration Period of Europe. PLoS One, 12(2), p.e0171064. DOI: 10.1371/journal.pone.0171064.

McCarthy, J. and Davis, A., 2016. Diagnosis and management of vertebral compression fractures. American Family Physician, 94(1), pp.44-50. PMID: 27386723.

McKenzie, C.J., Murphy, E.M. and Watt, I., 2022. Considering Care: A Traumatic Obturator Fracture Dislocation of the Hip in a Middle-Aged Man from Gaelic Medieval

Journal of Paleopathology, 6, pp.17-23. DOI: 10.32247/ajp2024.6.04.

Lambert, P.M. and Welker, M.H., 2019. Revisiting Traumatic Injury Risk and Agricultural Intensification: Postcranial Fracture Frequency at Cerro Oreja in the Moche Valley of North Coastal Peru. American Journal of Physical Anthropology, 169(1), pp.143-151. DOI: 10.1002/ajpa.23801.

Lee, K.H. and Steenberg, L.J., 2008. Equine-Related Facial Fractures. International Journal of Oral and Maxillofacial Surgery, 37(11), pp.999-1002. DOI: 10.1016/j.ijom.2008.05.009.

Leng, L.Z., Shajari, M. and Härtl, R., 2010. Management of acute cervical compression fractures in two patients with osteogenesis imperfecta. Spine, 35(22), pp.E1248-E1252. DOI: 10.1097/BRS.0b013e3181dfcae5.

Lessa, A., 2011. Spondylolysis and lifestyle among prehistoric coastal groups from Brazil. International Journal of Osteoarchaeology, 21(6), pp.660-668. DOI: 10.1002/oa.1172.

Losey, R.J., Ivanov, A.V., Palesskiy, S.V. and Bazaliiskii, V.I., 2016. Geochemical Analyses of Marmot Teeth to Evaluate the Potential for Overlapping Foraging Ranges in Two Siberian Human Cemetery Populations. Journal of Ethnobiology, 36(3), pp.493-511. DOI: 10.2993/0278-077136.3.493.

Lovell, N.C., 1997. Trauma analysis in paleopathology. American Journal of Physical Anthropology, 104(S25), pp.139170. DOI: 10.1002/(SICI)1096-8644(1997)25+<139::AID-AJPA6>3.0.CO;2-%23.

Lovell, N.C. and Grauer, A.L., 2019. Analysis and interpretation of trauma in skeletal remains. In: M.A. Katzenberg and A.L. Grauer, eds. Biological Anthropology of the Human Skeleton. 3rd ed. Oxford: Wiley Blackwell, pp.335383. DOI: 10.1002/9781119151647.ch10.

Mansfield, J.T. and Wroten, M., 2021. Pars Interarticularis defect. In StatPearls. Treasure Island (FL): StatPearls Publishing. PMID: 30855876.

Mant, M., 2019. Time after Time: Individuals with Multiple Fractures and Injury Recidivists in Long Eighteenth-century (c. 1666-1837) London. International Journal of Paleopathology, 24, pp.7-18. DOI: 10.1016/j.ijpp.2018.08.003.

Mant, M., de la Cova, C. and Brickley, M.B., 2021. Intersectionality and trauma analysis in bioarchaeology. American Journal of Physical Anthropology, 174(4), pp.583594. DOI: 10.1002/ajpa.24226.

May, T., 2022. The Rise of Chinggis Khan. In: The Mongol World. Routledge, pp.51-67. DOI: 10.4324/9781315165172-6.

Mayall, P., Pilbrow, V. and Bitadze, L., 2017. Migrating Huns and modified heads: Eigenshape analysis comparing intentionally modified crania from Hungary and Georgia in the Migration Period of Europe. PLoS One, 12(2), p.e0171064. DOI: 10.1371/journal.pone.0171064.

McCarthy, J. and Davis, A., 2016. Diagnosis and management of vertebral compression fractures. American Family Physician, 94(1), pp.44-50. PMID: 27386723.

McKenzie, C.J., Murphy, E.M. and Watt, I., 2022. Considering Care: A Traumatic Obturator Fracture Dislocation of the Hip in a Middle-Aged Man from Gaelic Medieval

Ballyhanna, Co. Donegal, Ireland. International Journal of Paleopathology,38,pp.115-122.DOI:

10.1016/j.ijpp.2022.07.003.

Meindl, R.S. and Lovejoy, C.O., 1985. Ectocranial suture closure: A revised method for the determination of skeletal age at death based on the lateral-anterior sutures. American Journal of Physical Anthropology, 68(1), pp.57-66. DOI: 10.1002/ajpa.1330680106.

Mitchell, P.D. and Redfern, R.C., 2008. Diagnostic criteria for developmental dislocation of the hip in human skeletal remains. International Journal of Osteoarchaeology, 18(1), pp.61-71. DOI: 10.1002/oa.919.

Morgan, B., Prakash, K., Mayberry, J.C. and Brickley, M.B., 2022. Thoracic Trauma: Clinical and Paleopathological Perspectives. International Journal of Paleopathology, 39, pp.50-63. DOI: 10.1016/j.ijpp.2022.09.003.

Nikitovic, D., Jankovic, I. and Mihelic, S., 2012. Juvenile Elbow Dislocation from the Prehistoric Site of Josipovac-Gravinjak, Croatia. International Journal of Paleopathology, 2(1), pp.36-41. DOI: 10.1016/j.ijpp.2012.06.001.

Okereke, I., Mmerem, K. and Balasubramanian, D., 2021. The management of cervical spine injuries—a literature review. Orthopedic Research and Reviews, pp.151-162. DOI: 10.2147/ORR.S324622.

Ortner, D.J., 2003. Identification of Pathological Conditions in Human Skeletal Remains. 2nd ed. San Diego: Academic Press, pp. 1-647. DOI: 10.1016/b978-012528628-2/50045-4.

Osterholtz, A.J., Harrod, R.P. and Miller, D.S., 2019. Analysis of Pathology and Activity-related Changes to the Patellae of Individuals from Tell Abraq. International Journal of Osteoarchaeology, 29(2), pp.294-302. DOI: 10.1002/oa.2739.

Oyetunji, T.A., Jackson, H.T., Obirieze, A.C., Moore, D., Branche, M.J., Greene, W.R., Cornwell III, E.E. and Siram, S.M., 2013. Associated injuries in traumatic sternal fractures: a review of the National Trauma Data Bank. The American Surgeon,79(7),pp.702-705.DOI:

10.1177/000313481307900714.

Paix, B.R., 1999. Rider injury rates and emergency medical services at equestrian events. British Journal of Sports Medicine, 33(1), pp.46-48. DOI: 10.1136/bjsm.33.1.46.

Passalacqua, N.V. and Rainwater, C.W., 2015. Introduction. In: Skeletal Trauma Analysis: Case Studies in Context. John Wiley & Sons, pp.1-6. DOI: 10.1002/9781118384213.ch1.

Pedersen, L.T., Domett, K.M., Chang, N.J., Halcrow, S.E., Buckley, H.R., Higham, C.F.W., O'Reilly, D.J.W. and Shewan, L., 2019. A bioarchaeological study of trauma at Late Iron Age to protohistoric Non Ban Jak, Northeast Thailand. Asian Perspectives, 58(2), pp.220-249. DOI: 10.1353/asi.2019.0014.

Petaros, A., Slaus, M., Coklo, M., Sosa, I., Cengija, M. and Bosnar, A., 2013. Retrospective analysis of free-fall fractures with regard to height and cause of fall. Forensic Science International, 226(1-3), pp.290-295. DOI: 10.1016/j.forsciint.2013.01.044.

Phenice, T.W., 1969. A newly developed visual method of sexing the os pubis. American Journal of Physical

Ballyhanna, Co. Donegal, Ireland. International Journal of Paleopathology,38,pp.115-122.DOI:

10.1016/j.ijpp.2022.07.003.

Meindl, R.S. and Lovejoy, C.O., 1985. Ectocranial suture closure: A revised method for the determination of skeletal age at death based on the lateral-anterior sutures. American Journal of Physical Anthropology, 68(1), pp.57-66. DOI: 10.1002/ajpa.1330680106.

Mitchell, P.D. and Redfern, R.C., 2008. Diagnostic criteria for developmental dislocation of the hip in human skeletal remains. International Journal of Osteoarchaeology, 18(1), pp.61-71. DOI: 10.1002/oa.919.

Morgan, B., Prakash, K., Mayberry, J.C. and Brickley, M.B., 2022. Thoracic Trauma: Clinical and Paleopathological Perspectives. International Journal of Paleopathology, 39, pp.50-63. DOI: 10.1016/j.ijpp.2022.09.003.

Nikitovic, D., Jankovic, I. and Mihelic, S., 2012. Juvenile Elbow Dislocation from the Prehistoric Site of Josipovac-Gravinjak, Croatia. International Journal of Paleopathology, 2(1), pp.36-41. DOI: 10.1016/j.ijpp.2012.06.001.

Okereke, I., Mmerem, K. and Balasubramanian, D., 2021. The management of cervical spine injuries -a literature review. Orthopedic Research and Reviews, pp.151-162. DOI: 10.2147/ORR.S324622.

Ortner, D.J., 2003. Identification of Pathological Conditions in Human Skeletal Remains. 2nd ed. San Diego: Academic Press, pp. 1-647. DOI: 10.1016/b978-012528628-2/50045-4.

Osterholtz, A.J., Harrod, R.P. and Miller, D.S., 2019. Analysis of Pathology and Activity-related Changes to the Patellae of Individuals from Tell Abraq. International Journal of Osteoarchaeology, 29(2), pp.294-302. DOI: 10.1002/oa.2739.

Oyetunji, T.A., Jackson, H.T., Obirieze, A.C., Moore, D., Branche, M.J., Greene, W.R., Cornwell III, E.E. and Siram, S.M., 2013. Associated injuries in traumatic sternal fractures: a review of the National Trauma Data Bank. The American Surgeon,79(7),pp.702-705.DOI:

10.1177/000313481307900714.

Paix, B.R., 1999. Rider injury rates and emergency medical services at equestrian events. British Journal of Sports Medicine, 33(1), pp.46-48. DOI: 10.1136/bjsm.33.1.46.

Passalacqua, N.V. and Rainwater, C.W., 2015. Introduction. In: Skeletal Trauma Analysis: Case Studies in Context. John Wiley & Sons, pp.1-6. DOI: 10.1002/9781118384213.ch1.

Pedersen, L.T., Domett, K.M., Chang, N.J., Halcrow, S.E., Buckley, H.R., Higham, C.F.W., O'Reilly, D.J.W. and Shewan, L., 2019. A bioarchaeological study of trauma at Late Iron Age to protohistoric Non Ban Jak, Northeast Thailand. Asian Perspectives, 58(2), pp. 220-249. DOI: 10.1353/asi.2019.0014.

Petaros, A., Slaus, M., Coklo, M., Sosa, I., Cengija, M. and Bosnar, A., 2013. Retrospective analysis of free-fall fractures with regard to height and cause of fall. Forensic Science International, 226(1-3), pp. 290-295. DOI: 10.1016/j.forsciint.2013.01.044.

Phenice, T.W., 1969. A newly developed visual method of sexing the os pubis. American Journal of Physical

Anthropology,30(2),pp.297-301.DOI:

10.1002/ajpa.1330300214.

Plischuk, M., De Feo, M.E. and Desántolo, B., 2018. Developmental Dysplasia of the Hip in Female Adult Individual: Site Tres Cruces I, Salta, Argentina (Superior Formative Period, 400-1000 AD). International Journal of Paleopathology,20,pp.108-113.DOI:

10.1016/j.ijpp.2017.08.003.

Plomp, K.A., 2023. Behaviour and the bones of the thorax and spine. In: C.S. Hirst, R.J. Gilmour, K.A. Plomp, and F. Alves Cardoso, eds. Behaviour in our Bones. Elsevier, pp.173-192. DOI: 10.1016/b978-0-12-821383-4.00004-8.

Plomp, K., Roberts, C. and Vidarsdottir, U.S., 2015. Does the correlation between Schmorl's nodes and vertebral morphology extend into the lumbar spine? American Journal of Physical Anthropology, 157(3), pp.526-534. DOI: 10.1002/ajpa.22730.

Rando, C. and Waldron, T., 2012. TMJ osteoarthritis: a new approach to diagnosis. American Journal of Physical Anthropology, 148(1), pp.45-53. DOI: 10.1002/ajpa.22039.

Redfern, R.C. and Roberts, C.A., 2019. Trauma. In: J.E. Buikstra, ed. Ortner's Identification of Pathological Conditions in Human Skeletal Remains. London: Elsevier/Academic Press, pp.211-284. DOI: 10.1016/b978-0-12-809738-0.00009-0.

Roberts, C.A., 2006. Trauma in Biocultural Perspective: Past, Present and Future Work in Britain. In: M. Cox and S. Mays, eds. Human Osteology in Archaeology and Forensic Science. Cambridge: Cambridge University Press, pp.337-356.

Roberts, C.A. and Manchester, K., 2007. The Archaeology of Disease. Cornell University Press, pp. 1-829.

Roca, M.G., Jiménez Brobeil, S.A., Al Oumaoui, I., Tristán Fernández, J.M. and Molina González, F., 2012. Approach to disability in a population from the Argar Culture. Trabajos de Prehistoria, 69(1), pp.162-170. DOI: 10.3989/tp.2012.12086.

Sandiford, N., Buckle, C., Alao, U., Davidson, J. and Ritchie, J., 2013. Injuries associated with recreational horse riding and changes over the last 20 years: a review. JRSM Short Reports, 4(5),pp.1-6.DOI:

10.1177/2042533313476688.

Schaefer, M., Black, S. and Scheuer, L., 2009. Juvenile Osteology, A Laboratory and Field Manual. New York: Elsevier, pp. 1-382.

Scott, R.M. and Buckley, H.R., 2010. Biocultural interpretations of trauma in two prehistoric Pacific Island populations from Papua New Guinea and the Solomon Islands. American Journal of Physical Anthropology, 142(4), pp.509-518. DOI: 10.1002/ajpa.21250.

Seguchi, N., Loftus III, J.F., Yonemoto, S. and Murphy, M.M., 2023. Investigating intentional cranial modification: A hybridized two-dimensional/three-dimensional study of the Hirota site, Tanegashima, Japan. PLoS One, 18(8), p.e0289219. DOI: 10.1371/journal.pone.0289219.

Shchetnikov, A.A., Bezrukova, E.V., Matasova, G.G., Kazansky, A.Y., Ivanova, V.V., Danukalova, G.A., Filinov, I.A. et al., 2019. Upper Paleolithic site Tuyana-a multi-proxy record of sedimentation and environmental history during the Late Pleistocene and Holocene in the Tunka rift valley, Baikal region. Quaternary International, 534, pp.138-157. DOI:

Anthropology,30(2),pp.297-301.DOI:

10.1002/ajpa.1330300214.

Plischuk, M., De Feo, M.E. and Desántolo, B., 2018. Developmental Dysplasia of the Hip in Female Adult Individual: Site Tres Cruces I, Salta, Argentina (Superior Formative Period, 400-1000 AD). International Journal of Paleopathology,20,pp.108-113.DOI:

10.1016/j.ijpp.2017.08.003.

Plomp, K.A., 2023. Behaviour and the bones of the thorax and spine. In: C.S. Hirst, R.J. Gilmour, K.A. Plomp, and F. Alves Cardoso, eds. Behaviour in our Bones. Elsevier, pp.173-192. DOI: 10.1016/b978-0-12-821383-4.00004-8.

Plomp, K., Roberts, C. and Vidarsdottir, U.S., 2015. Does the correlation between Schmorl's nodes and vertebral morphology extend into the lumbar spine? American Journal of Physical Anthropology, 157(3), pp.526-534. DOI: 10.1002/ajpa.22730.

Rando, C. and Waldron, T., 2012. TMJ osteoarthritis: a new approach to diagnosis. American Journal of Physical Anthropology, 148(1), pp.45-53. DOI: 10.1002/ajpa.22039.

Redfern, R.C. and Roberts, C.A., 2019. Trauma. In: J.E. Buikstra, ed. Ortner's Identification of Pathological Conditions in Human Skeletal Remains. London: Elsevier/Academic Press, pp.211-284. DOI: 10.1016/b978-0-12-809738-0.00009-0.

Roberts, C.A., 2006. Trauma in Biocultural Perspective: Past, Present and Future Work in Britain. In: M. Cox and S. Mays, eds. Human Osteology in Archaeology and Forensic Science. Cambridge: Cambridge University Press, pp.337-356.

Roberts, C.A. and Manchester, K., 2007. The Archaeology of Disease. Cornell University Press, pp. 1-829.

Roca, M.G., Jiménez Brobeil, S.A., Al Oumaoui, I., Tristán Fernández, J.M. and Molina González, F., 2012. Approach to disability in a population from the Argar Culture. Trabajos de Prehistoria, 69(1), pp.162-170. DOI: 10.3989/tp.2012.12086.

Sandiford, N., Buckle, C., Alao, U., Davidson, J. and Ritchie, J., 2013. Injuries associated with recreational horse riding and changes over the last 20 years: a review. JRSM Short Reports, 4(5),pp.1-6.DOI:

10.1177/2042533313476688.

Schaefer, M., Black, S. and Scheuer, L., 2009. Juvenile Osteology, A Laboratory and Field Manual. New York: Elsevier, pp. 1-382.

Scott, R.M. and Buckley, H.R., 2010. Biocultural interpretations of trauma in two prehistoric Pacific Island populations from Papua New Guinea and the Solomon Islands. American Journal of Physical Anthropology, 142(4), pp.509-518. DOI: 10.1002/ajpa.21250.

Seguchi, N., Loftus III, J.F., Yonemoto, S. and Murphy, M.M., 2023. Investigating intentional cranial modification: A hybridized two-dimensional/three-dimensional study of the Hirota site, Tanegashima, Japan. PLoS One, 18(8), p.e0289219. DOI: 10.1371/journal.pone.0289219.

Shchetnikov, A.A., Bezrukova, E.V., Matasova, G.G., Kazansky, A.Y., Ivanova, V.V., Danukalova, G.A., Filinov, I.A. et al., 2019. Upper Paleolithic site Tuyana-a multi-proxy record of sedimentation and environmental history during the Late Pleistocene and Holocene in the Tunka rift valley, Baikal region. Quaternary International, 534, pp.138-157. DOI:

10.1016/j.quaint.2019.02.043.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Shkrum, M.J. and Ramsay, D.A., 2007. Blunt trauma: with reference to planes, trains, and automobiles. In: Forensic Pathology of Trauma: Common Problems for the Pathologist. Humana Press Inc., pp.405-518. DOI: 10.1007/978-1-59745-138-3_8.

Shorey, C.W. and Campbell, J.H., 2000. Dislocation of the temporomandibular joint. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 89(6), pp.662-668. DOI: 10.1067/moe.2000.106693.

Sieper, J., Braun, J., Rudwaleit, M., Boonen, A. and Zink, A., 2002. Ankylosing spondylitis: an overview. Annals of the Rheumatic Diseases, 61(Suppl 3), pp.iii8-iii18. DOI: 10.1136/ard.61.suppl_3.iii8.

Smith, M. and Knüsel, C., 2014. Introduction: The Bioarchaeology of Conflict. In: The Routledge Handbook of the Bioarchaeology of Human Conflict. Routledge, pp.3-24. DOI: 10.4324/9781315883366.ch1.

Sottysiak, A., 2017. Antemortem cranial trauma in ancient Mesopotamia. International Journal of Osteoarchaeology, 27(1), pp.119-128. DOI: 10.1002/oa.2478.

Spatola, B.F., 2015. Atypical gunshot and blunt force injuries: wounds along the biomechanical continuum. In: Skeletal Trauma Analysis: Case Studies in Context. John Wiley & Sons, Ltd, pp.7-26. DOI: 10.1002/9781118384213.ch2.

Stone, P.K., 2012. Binding women: Ethnology, skeletal deformations, and violence against women. International Journal of Paleopathology, 2(2-3), pp.53-60. DOI: 10.1016/j.ijpp.2012.09.008.

Stone, P.K., 2020. Bound to please: The shaping of female beauty, gender theory, structural violence, and bioarchaeological investigations. In: Purposeful Pain: The Bioarchaeology of Intentional Suffering. Springer Nature Switzerland AG, pp.39-62. DOI: 10.1007/978-3-030-32181-9_3.

Svyatko, S.V., Polyakov, A.V., Soenov, V.I., Stepanova, N.F., Reimer, P.J., Ogle, N., Tyurina, E.A., Grushin, S.P. and Rykun, M.P., 2017. Stable isotope palaeodietary analysis of the early bronze age Afanasyevo culture in the Altai Mountains, southern Siberia. Journal of Archaeological Science: Reports, 14, pp.65-75. DOI: 10.1016/j.jasrep.2017.05.023.

Sward, L., 1992. The thoracolumbar spine in young elite athletes: current concepts on the effects of physical training. Sports Medicine, 13, pp.357-364. DOI: 10.2165/00007256199213050-00005.

Taylor, W.T.T., Bayarsaikhan, J. and Tuvshinjargal, T., 2015. Equine cranial morphology and the identification of riding and chariotry in late Bronze Age Mongolia. Antiquity, 89(346), pp.854-871. DOI: 10.15184/aqy.2015.76.

Thompson, G.H., 2001. Dislocations of the elbow. In: Rockwood and Wilkins' Fractures in Children. Philadelphia: Lippincott Williams & Wilkins, pp.530-562.

Thomsen, K.B., 2022. A Bioarchaeological Analysis of Spinal Trauma in an Early Medieval Skeletal Population from Giecz, Poland: The Osteological Evidence for an Agricultural Lifestyle. PhD diss., The Ohio State University.

Tiesler, V., 2012. Studying cranial vault modifications in

10.1016/j.quaint.2019.02.043.

Shkrum, M.J. and Ramsay, D.A., 2007. Blunt trauma: with reference to planes, trains, and automobiles. In: Forensic Pathology of Trauma: Common Problems for the Pathologist. Humana Press Inc., pp.405-518. DOI: 10.1007/978-1-59745-138-3_8.

Shorey, C.W. and Campbell, J.H., 2000. Dislocation of the temporomandibular joint. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 89(6), pp.662-668. DOI: 10.1067/moe.2000.106693.

Sieper, J., Braun, J., Rudwaleit, M., Boonen, A. and Zink, A., 2002. Ankylosing spondylitis: an overview. Annals of the Rheumatic Diseases, 61(Suppl 3), pp.iii8-iii18. DOI: 10.1136/ard.61.suppl_3.iii8.

Smith, M. and Knüsel, C., 2014. Introduction: The Bioarchaeology of Conflict. In: The Routledge Handbook of the Bioarchaeology of Human Conflict. Routledge, pp.3-24. DOI: 10.4324/9781315883366.ch1.

Sottysiak, A., 2017. Antemortem cranial trauma in ancient Mesopotamia. International Journal of Osteoarchaeology, 27(1), pp.119-128. DOI: 10.1002/oa.2478.

Spatola, B.F., 2015. Atypical gunshot and blunt force injuries: wounds along the biomechanical continuum. In: Skeletal Trauma Analysis: Case Studies in Context. John Wiley & Sons, Ltd, pp.7-26. DOI: 10.1002/9781118384213.ch2.

Stone, P.K., 2012. Binding women: Ethnology, skeletal deformations, and violence against women. International Journal of Paleopathology, 2(2-3), pp.53-60. DOI: 10.1016/j.ijpp.2012.09.008.

Stone, P.K., 2020. Bound to please: The shaping of female beauty, gender theory, structural violence, and bioarchaeological investigations. In: Purposeful Pain: The Bioarchaeology of Intentional Suffering. Springer Nature Switzerland AG, pp.39-62. DOI: 10.1007/978-3-030-32181-9_3.

Svyatko, S.V., Polyakov, A.V., Soenov, V.I., Stepanova, N.F., Reimer, P.J., Ogle, N., Tyurina, E.A., Grushin, S.P. and Rykun, M.P., 2017. Stable isotope palaeodietary analysis of the early bronze age Afanasyevo culture in the Altai Mountains, southern Siberia. Journal of Archaeological Science: Reports, 14, pp.65-75. DOI: 10.1016/j.jasrep.2017.05.023.

Sward, L., 1992. The thoracolumbar spine in young elite athletes: current concepts on the effects of physical training. Sports Medicine, 13, pp.357-364. DOI: 10.2165/00007256199213050-00005.

Taylor, W.T.T., Bayarsaikhan, J. and Tuvshinjargal, T., 2015. Equine cranial morphology and the identification of riding and chariotry in late Bronze Age Mongolia. Antiquity, 89(346), pp.854-871. DOI: 10.15184/aqy.2015.76.

Thompson, G.H., 2001. Dislocations of the elbow. In: Rockwood and Wilkins' Fractures in Children. Philadelphia: Lippincott Williams & Wilkins, pp.530-562.

Thomsen, K.B., 2022. A Bioarchaeological Analysis of Spinal Trauma in an Early Medieval Skeletal Population from Giecz, Poland: The Osteological Evidence for an Agricultural Lifestyle. PhD diss., The Ohio State University.

Tiesler, V., 2012. Studying cranial vault modifications in

ancient Mesoamerica. Journal of Anthropological Sciences, 90, pp.1-26. DOI: 10.4436/jass.90007.

Tipper, S., Wilson, P. and Roberts, C.A., 2023. Spondylolysis in ancient Nubian skeletal populations. International Journal of Osteoarchaeology, 33(5), pp.876-885. DOI: 10.1002/oa.3241.

Togan, I., 2022a. Mongolia before Chinggis Khan. In: The Mongol World. Routledge, pp.33-50. DOI: 10.4324/9781315165172-5.

Togan, I., 2022b. The Early Mongol State. In: The Mongol World. Routledge, pp.68-86. DOI: 10.4324/9781315165172-7.

Toman, E., Beaven, A., Harland, S. and Porter, K., 2016. Clay-shoveler's fracture: A snapshot. Trauma, 18(3), pp.186189. DOI: 10.1177/1460408616640998.

Toritsuka, Y., Horibe, S., Hiro-Oka, A., Mitsuoka, T. and Nakamura, N., 2007. Medial marginal fracture of the patella following patellar dislocation. The Knee, 14(6), pp.429-433. DOI: 10.1016/j.knee.2007.08.002.

Toufeeq, M., Kodali, M.V.R.M., Gunturu, S., Kumar, K. and Surapaneni, K., 2019. Bilateral Dislocation of Mandibular Condyles following General Anesthesia—An Overlooked Problem: A Case Report. European Journal of Dentistry, 13(2), pp.291-293. DOI: 10.1055/s-0039-1693528.

Traversari, M., Feletti, F., Vazzana, A., Gruppioni, G. and Frelat, M.A., 2016. Three Cases of Developmental Dysplasia of the Hip on Partially Mummified Human Remains (Roccapelago, Modena, 18th Century): a Study of Palaeopathological Indicators through Direct Analysis and 3D Virtual Models. Bulletins et Mémoires de La Société D'anthropologie de Paris, 28(3-4), pp.202-212. DOI : 10.1007/s13219-015-0140-7

Tumler, D., Paladin, A. and Zink, A., 2019. Perimortem Sharp Force Trauma in an Individual from the Early Medieval Cemetery of Säben-Sabiona in South Tyrol, Italy. International Journal of Paleopathology, 27, pp.46-55. DOI: 10.1016/j.ijpp.2019.07.005.

Tur, S.S.S., Matrenin, S.S. and Soenov, V.I., 2018. Armed violence among the Altai Mountains pastoralists of the Xiongnu-Sarmatian age. Archaeology, Ethnology & Anthropology of Eurasia, 46(4), pp. 132-139. DOI: 10.17746/1563-0102.2018.46.4.132-139.

Unguryanu, T.N., Grjibovski, A.M., Trovik, T.A., Ytterstad, B. and Kudryavtsev, A.V., 2020. Mechanisms of accidental fall injuries and involved injury factors: a registry-based study. Injury Epidemiology, 7, pp. 1-10. DOI: 10.1186/s40621-020-0234-7.

Vanezis, P., 2021. Pathology of Sharp Force Trauma. CRC Press, pp. 1-302. DOI: 10.4324/9780429272462.

Walczak, B.E., Johnson, C.N. and Howe, B.M., 2015. Myositis ossificans. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 23(10), pp. 612-622. DOI: 10.5435/jaaos-d-14-00269.

Waldron, T., 2020. Palaeopathology. Cambridge University Press, pp. 1-279. DOI: 10.1017/9781108583961.

Watts, M. and Meisel, E.M., 2011. Cattle associated trauma-A one year prospective study of all injuries. Injury, 42(10), pp. 1084-1087. DOI: 10.1016/j.injury.2011.02.019.

ancient Mesoamerica. Journal of Anthropological Sciences, 90, pp.1-26. DOI: 10.4436/jass.90007.

Tipper, S., Wilson, P. and Roberts, C.A., 2023. Spondylolysis in ancient Nubian skeletal populations. International Journal of Osteoarchaeology, 33(5), pp.876-885. DOI: 10.1002/oa.3241.

Togan, I., 2022a. Mongolia before Chinggis Khan. In: The Mongol World. Routledge, pp.33-50. DOI: 10.4324/9781315165172-5.

Togan, I., 2022b. The Early Mongol State. In: The Mongol World. Routledge, pp.68-86. DOI: 10.4324/9781315165172-7.

Toman, E., Beaven, A., Harland, S. and Porter, K., 2016. Clay-shoveler's fracture: A snapshot. Trauma, 18(3), pp.186189. DOI: 10.1177/1460408616640998.

Toritsuka, Y., Horibe, S., Hiro-Oka, A., Mitsuoka, T. and Nakamura, N., 2007. Medial marginal fracture of the patella following patellar dislocation. The Knee, 14(6), pp.429-433. DOI: 10.1016/j.knee.2007.08.002.

Toufeeq, M., Kodali, M.V.R.M., Gunturu, S., Kumar, K. and Surapaneni, K., 2019. Bilateral Dislocation of Mandibular Condyles following General Anesthesia—An Overlooked Problem: A Case Report. European Journal of Dentistry, 13(2), pp.291-293. DOI: 10.1055/s-0039-1693528.

Traversari, M., Feletti, F., Vazzana, A., Gruppioni, G. and Frelat, M.A., 2016. Three Cases of Developmental Dysplasia of the Hip on Partially Mummified Human Remains (Roccapelago, Modena, 18th Century): a Study of Palaeopathological Indicators through Direct Analysis and 3D Virtual Models. Bulletins et Mémoires de La Société D'anthropologie de Paris, 28(3-4), pp.202-212. DOI : 10.1007/s13219-015-0140-7.

Tumler, D., Paladin, A. and Zink, A., 2019. Perimortem Sharp Force Trauma in an Individual from the Early Medieval Cemetery of Säben-Sabiona in South Tyrol, Italy. International Journal of Paleopathology, 27, pp.46-55. DOI: 10.1016/j.ijpp.2019.07.005.

Tur, S.S.S., Matrenin, S.S. and Soenov, V.I., 2018. Armed violence among the Altai Mountains pastoralists of the Xiongnu-Sarmatian age. Archaeology, Ethnology & Anthropology of Eurasia, 46(4), pp. 132-139. DOI: 10.17746/1563-0102.2018.46.4.132-139.

Unguryanu, T.N., Grjibovski, A.M., Trovik, T.A., Ytterstad, B. and Kudryavtsev, A.V., 2020. Mechanisms of accidental fall injuries and involved injury factors: a registry-based study. Injury Epidemiology, 7, pp. 1-10. DOI: 10.1186/s40621-020-0234-7.

Vanezis, P., 2021. Pathology of Sharp Force Trauma. CRC Press, pp. 1-302. DOI: 10.4324/9780429272462.

Walczak, B.E., Johnson, C.N. and Howe, B.M., 2015. Myositis ossificans. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 23(10), pp. 612-622. DOI: 10.5435/jaaos-d-14-00269.

Waldron, T., 2020. Palaeopathology. Cambridge University Press, pp. 1-279. DOI: 10.1017/9781108583961.

Watts, M. and Meisel, E.M., 2011. Cattle associated trauma-A one year prospective study of all injuries. Injury, 42(10), pp. 1084-1087. DOI: 10.1016/j.injury.2011.02.019.

Welck, M.J., Hayes, T., Pastides, P., Khan, W. and Rudge, B., 2017. Stress fractures of the foot and ankle. Injury, 48(8), pp. 1722-1726. DOI: 10.1016/j.injury.2015.06.015.

Wentz, R.K. and de Grummond, N.T., 2009. Life on Horseback: Palaeopathology of Two Scythian Skeletons from Alexandropol, Ukraine. International Journal of Osteoarchaeology, 19(1), pp.107-115. DOI: 10.1002/oa.964.

Wilkin, S., Ventresca Miller, A., Miller, B.K., Spengler, R.N., Taylor, W.T., Fernandes, R., Hagan, R.W., Bleasdale, M., Zech, J., Ulziibayar, S. and Myagmar, E., 2020. Economic diversification supported the growth of Mongolia's nomadic empires. Scientific Reports, 10(1), pp.1-12. DOI: 10.1038/s41598-020-60194-0.

Zhang, H., Merrett, D.C., Jing, Z., Tang, J., He, Y., Yue, H., Yue, Z. and Yang, D.Y., 2017. Osteoarthritis, labour division, and occupational specialization of the Late Shang China-insights from Yinxu (ca. 1250-1046 BC). PLoS One, 12(5), p.e0176329. DOI: 10.1371/journal.pone.0176329.

Zhang, W., Wang, A., Zou, Z., Jakob, T., Chen, P., Alifujiang, N., Zhang, Q. and Wang, Q., 2022. The Impaired Nomad: A Bioarchaeological Study on an Early Iron Age Case of Knee Ankylosis from the Jiaerkenjiaga Cemetery, Northwestern China. International Journal of Osteoarchaeology, 32(2), pp.493-508. DOI: 10.1002/oa.3083.

Zhao, Y., Guo, L., Xiao, Y., Niu, Y., Zhang, X., He, D. and Zeng, W., 2020. Osteological characteristics of Chinese foot-binding in archaeological remains. International Journal of Paleopathology,28,pp.48-58.DOI:

10.1016/j.ijpp.2019.12.003.

Zmurko, M.G., Tannoury, T.Y., Tannouty, C.A. and Anderson, D.G., 2003. Cervical sprains, disc herniations, minor fractures, and other cervical injuries in the athlete. Clinics in Sports Medicine, 22(3), pp.513-521. DOI: 10.1016/S0278-5919(03)00003-6.

Kharinskii, A.V., Erdenebaatar, D., 2011. Northern Cis-Hovsgol in the beginning of the II millennium CE. Theory and Practice of Archaeological Investigations. No. 6, pp. 107-124. (In Russ.). EDN: QCXQNJ.

Kharinskii, A.V., Orgilbayar S., Korostelev A.M., Erdenebaatar, D., Portniagin, M.A., 2023. Zuun Hyaryn Denj 1 Burial Ground of the 11th - 13th Centuries from the Northern Shore of Lake Khubsugul (Mongolia). Archaeological Volume of the Lower Volga Region, Vol. 22. No. 1. pp.289-307. (In Russ.). DOI: 10.15688/nav.jvolsu.2023.1.14. EDN: KYIVLQ.

Kharinskii, A.V., Portniagin, M.A., 2021. To the question of the Tunka cemetery location that was investigated by B.E. Petri in 1920s. Ancient Cultures of Mongolia, Southern Siberia, and Northern China: Proceedings of the XI International Scientific Conference (September 8-11, 2021) in Abakan/edited by A.V. Polyakov, M.T. Kashuba, A.D. Tsybiktarov. Abakan: IIMK RAS. pp. 265-270. (In Russ.). DOI: 10.31600/978-5-907298-19-4.265-270. EDN: DEFGAN.

Kharinskii, A.V., Senyurina, Y.A. and Ivanov, G.L., 2022. Fabric from the Collection of Finds of the 13th-14th Centuries Found in the Tunka Valley (Republic of Buryatia). Povolzhskaya Arkheologiya (The Volga River Region Archaeology), 4 (42), pp.74-89. (In Russ.). DOI: 10.24852/pa2022.4.42.74.89. EDN: JYFKDW.

Welck, M.J., Hayes, T., Pastides, P., Khan, W. and Rudge, B., 2017. Stress fractures of the foot and ankle. Injury, 48(8), pp. 1722-1726. DOI: 10.1016/j.injury.2015.06.015.

Wentz, R.K. and de Grummond, N.T., 2009. Life on Horseback: Paleopathology of Two Scythian Skeletons from Alexandropol, Ukraine. International Journal of Osteoarchaeology, 19(1), pp.107-115. DOI: 10.1002/oa.964.

Wilkin, S., Ventresca Miller, A., Miller, B.K., Spengler, R.N., Taylor, W.T., Fernandes, R., Hagan, R.W., Bleasdale, M., Zech, J., Ulziibayar, S. and Myagmar, E., 2020. Economic diversification supported the growth of Mongolia's nomadic empires. Scientific Reports, 10(1), pp.1-12. DOI: 10.1038/s41598-020-60194-0.

Zhang, H., Merrett, D.C., Jing, Z., Tang, J., He, Y., Yue, H., Yue, Z. and Yang, D.Y., 2017. Osteoarthritis, labour division, and occupational specialization of the Late Shang China-insights from Yinxu (ca. 1250-1046 BC). PLoS One, 12(5), p.e0176329. DOI: 10.1371/journal.pone.0176329.

Zhang, W., Wang, A., Zou, Z., Jakob, T., Chen, P., Alifujiang, N., Zhang, Q. and Wang, Q., 2022. The Impaired Nomad: A Bioarchaeological Study on an Early Iron Age Case of Knee Ankylosis from the Jiaerkenjiaga Cemetery, Northwestern China. International Journal of Osteoarchaeology, 32(2), pp.493-508. DOI: 10.1002/oa.3083.

Zhao, Y., Guo, L., Xiao, Y., Niu, Y., Zhang, X., He, D. and Zeng, W., 2020. Osteological characteristics of Chinese foot-binding in archaeological remains. International Journal of Paleopathology,28,pp.48-58.DOI:

10.1016/j.ijpp.2019.12.003.

Zmurko, M.G., Tannoury, T.Y., Tannouty, C.A. and Anderson, D.G., 2003. Cervical sprains, disc herniations, minor fractures, and other cervical injuries in the athlete. Clinics in Sports Medicine, 22(3), pp.513-521. DOI: 10.1016/S0278-5919(03)00003-6.

Харинский А.В., Эрдэнэбаатар Д. Северное Прихуб-сугулье в начале II тыс. н. э. // Теория и практика археологических исследований. 2011. № 6. С. 107-124. EDN: QCXQNJ.

Харинский А.В., Оргилбаяр С., Коростелев А.М., Эрдэнэбаатар Д., Портнягин М.А. Могильник XI-XIII вв. Зуун хярын дэнж 1 на северном побережье озера Хубсугул (Монголия) // Нижневолжский археологический вестник. 2023.Т. 22.№ 1.С. 289-307.

DOI: 10.15688/nav.jvolsu.2023.1.14. EDN: KYIVLQ.

Харинский А.В., Портнягин М.А. К вопросу о расположении Тункинского могильника, исследованного Б.Э. Петри в 1920-е гг. // Древние культуры Монголии, Южной Сибири и Северного Китая : Материалы XI Международной научной конференции (8-11 сентября 2021 года, г. Абакан) / отв. ред. А.В. Поляков, М.Т. Кашуба, А.Д. Цыбиктаров. Абакан : ИИМК РАН, 2021. С. 265-270. DOI: 10.31600/978-5-907298-19-4.265-270. EDN: DEFGAN.

Харинский А.В., Сенюрина Ю.А., Иванов Г.Л. Ткань из коллекции находок XIII-XIV в., обнаруженных в Тункин-ской долине (Республика Бурятия) // Поволжская археология.2022.№ 4 (42).С. 74-89. DOI: 10.24852/pa2022.4.42.74.89. EDN: JYFKDW.

Kradin, N.N., Kharinskii A.V., Baksheeva S.E., Kovychev E.V., Prokopets S.D. 2016. Archaeology of Genghis Khan Empire in Mongolia and Transbaikalia. Stratum plus: Archaeology and Cultural Anthropology, 6, pp.17-43. (In Russ.). EDN: XMAGVR.

Orgilbayar, S., Erdenebaatar, D., Kharinskii, A.V., 2018. Brief results of the fieldwork conducted by the Mongolian-Russian project of "Archaeology of Central Asia" in the Khankh Sum district of the Cis-Hovsgol region. Archaeology of Mongolia- 2017. Ulaanbaatar: Mongol Ulsyn Ih Surguul', pp.120-123. (In Mong.)

Orgilbayar, S., Kharinskii, A.V., Erdenebaatar, D., Mandals ren, N., 2019. Preliminary results of archaeological excavations conducted by the Mongolian-Russian project of "Archaeological Research in Central Asia - 1" in the Khankh Sum district of the Cis-Hovsgol region. Archaeology of Mongolia - 2018. Ulaanbaatar: Mongol Ulsyn Ih Surguul', pp.140-146. (In Mong.)

Information about the authors

Chenhe Yang,

MA Graduate Student, Department of Anthropology, University of Saskatchewan, 55 Campus Drive, Saskatoon, SK, S7N 5B1, Canada, e-mail: [emailprotected], https://orcid.org/0009-0000-5947-3468 Tatiana Nomokonova,

PhD, Associate Professor, Department of Anthropology,

University of Saskatchewan,

55 Campus Drive, Saskatoon, SK, S7N 5B1, Canada,

e-mail: [emailprotected],

https://orcid.org/0000-0002-8756-1681

Robert J. Losey,

PhD, Professor, Department of Anthropology University of Alberta,

13-15 HM Tory Build., Edmonton, AB, T6G 2H4, Canada, e-mail: [emailprotected], https://orcid.org/0000-0003-3615-8160 Artur V. Kharinskii,

Dr. Sci. (History), Professor, Director of the Laboratory of Archaeology, Palaeoecology and Subsistence of People of the Northern Asia,

Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk 664074, Russia; Irkutsk State University, 1 Karl Marx St., Irkutsk 664003, Russia, e-mail: [emailprotected], https://orcid.org/0000-0002-4815-6069

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Diimaajav Erdenebaatar,

Professor, Head Department of the Archaeology,

Ulaanbaatar State University,

5th khoroo, Bayanzurkhdistrict, Ulaanbaatar, Mongolia,

e-mail: [emailprotected], [emailprotected],

https://orcid.org/0000-0002-0030-064X

Matvei A. Portniagin,

Laboratory Assistant Researcher of the Laboratory of

Крадин Н.Н., Харинский А.В., Бакшеева С.Е., Ковычев Е.В., Прокопец С.Д. Археология империи Чингис-хана в Монголии и Забайкалье // Stratum plus. Археология и культурная антропология. 2016. № 6. С. 17-43. EDN: XMAGVR.

Оргилбаяр С., Эрдэнэбаатар Д., Харинский А.В. Мон-гол-Оросын хамтарсан "Тев Азийн археологи" теслийн Хевсгел аймгийн Ханх сумын нутагт явуулсан хээрийн шинжилгээний ажлын товч ур дунгээс. Монголын археологи - 2017. Улаанбаатар хот, 2018. С.120-123. (На монгольском).

Оргилбаяр С., Харинский А.В., Эрдэнэбаатар Д., Мандалсурэн Н. Монгол-Оросын хамтарсан "Тев Азийн археологийн шинжилгээ-1" теслийн Хевсгел аймгийн Ханх сумын нутагт явуулсан малтлага судалгааны ажлын урьд-чилсан ур дунгээс. Монголын археологи - 2018. Улаанбаатар хот, 2019. С.140-146. (На монгольском).

Информация об авторах

Ченхе Янг,

аспирант магистратуры, Отделение антропологии,

Университет Саскатчевана,

55 Campus Drive, Saskatoon, SK, S7N 5B1, Canada,

e-mail: [emailprotected],

https://orcid.org/0009-0000-5947-3468

Номоконова Татьяна Юрьевна,

PhD, профессор, Отделение антропологии,

Университет Саскатчевана,

55 Campus Drive, Saskatoon, SK, S7N 5B1, Canada,

e-mail: [emailprotected],

https://orcid.org/0000-0002-8756-1681

Лозей Роберт Дж.,

PhD, профессор, Отделение антропологии, Университет Альберты,

13-15 HM Tory Build., Edmonton, AB, T6G 2H4, Canada

e-mail: [emailprotected],

https://orcid.org/0000-0003-3615-8160

Харинский Артур Викторович,

доктор исторических наук, профессор, руководитель

Лаборатории археологии, палеоэкологии и систем

жизнедеятельности народов Северной Азии,

Иркутский национальный исследовательский технический

университет,

664074, г. Иркутск, ул. Лермонтова, 83, Россия; Иркутский государственный университет, 664003 г. Иркутск, ул. Карла Маркса, 1, Россия, e-mail: [emailprotected], https://orcid.org/0000-0002-4815-6069 Эрдэнэбаатар Диймааджав, профессор, заведующий кафедрой археологии, Улан-Баторский государственный университет, Монголия, г. Улан-Батор, ул. Баянзурх, 5-й хороо, e-mail: [emailprotected], [emailprotected], https://orcid.org/0000-0002-0030-064X Портнягин Матвей Александрович, лаборант-исследователь Лаборатории археологии,

Archaeology, Paleoecology and Subsistence of Peoples of the Northern Asia,

Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk 664074, Russia, e-mail: [emailprotected], https://orcid.org/0000-0002-7245-105X

Samdantsoodol Orgilbayar,

Master of Historical Sciences, Lecturer, Department of History

and Archaeology,

Ulaanbaatar State University,

5th khoroo, Bayanzurkhdistrict, Ulaanbaatar, Mongolia,

e-mail: [emailprotected],

https://orcid.org/0000-0001-5492-2164

Angela R. Lieverse,

PhD, Professor, Department of Anthropology, University of Saskatchewan, 55 Campus Drive, Saskatoon, SK, S7N 5B1, Canada, e-mail: [emailprotected], https://orcid.org/0000-0003-0711-1793

Contribution of the authors

The authors contributed equally to this article.

Conflict of interests

The authors declare no conflict of interests.

The authors have read and approved the final manuscript.

Article info

The article was submitted June 3, 2024; approved after reviewing June 27, 2024; accepted for publication July 8, 2024.

палеоэкологии и систем жизнедеятельности народов Северной Азии,

Иркутский национальный исследовательский технический университет,

664074, г. Иркутск, ул. Лермонтова, 83, Россия,

e-mail: [emailprotected],

https://orcid.org/0000-0002-7245-105X

Оргилбаяр Самданцоодол,

магистр истории, преподаватель кафедры истории и

археологии,

Улан-Баторский государственный университет, Монголия, г. Улан-Батор, ул. Баянзурх, 5-й хороо, e-mail: [emailprotected], https://orcid.org/0000-0001-5492-2164 Ливерс Анжела Р.,

PhD, профессор, Отделение антропологии, Университет Саскатчеван, 55 Campus Drive, Saskatoon, SK, S7N 5B1, Canada, e-mail: [emailprotected], https://orcid.org/0000-0003-0711-1793

Вклад авторов

Все авторы сделали эквивалентный вклад в подготовку публикации.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Все авторы прочитали и одобрили окончательный вариант рукописи.

Информация о статье

Статья поступила в редакцию 3 июня 2024 г.; одобрена после рецензирования 27 июня 2024 г.; принята к публикации 8 июля 2024 г.

Trauma analysis in bioarchaeology: a review and case study from Khuvsgul and the Tunka Valley (2025)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Clemencia Bogisich Ret

Last Updated:

Views: 5599

Rating: 5 / 5 (60 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Clemencia Bogisich Ret

Birthday: 2001-07-17

Address: Suite 794 53887 Geri Spring, West Cristentown, KY 54855

Phone: +5934435460663

Job: Central Hospitality Director

Hobby: Yoga, Electronics, Rafting, Lockpicking, Inline skating, Puzzles, scrapbook

Introduction: My name is Clemencia Bogisich Ret, I am a super, outstanding, graceful, friendly, vast, comfortable, agreeable person who loves writing and wants to share my knowledge and understanding with you.